首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The paramyxovirus nucleoproteins (NPs) encapsidate the genomic RNA into nucleocapsids, which are then incorporated into virus particles. We determined the protein-protein interaction between NP molecules and the molecular mechanism required for incorporating nucleocapsids into virions in two closely related viruses, human parainfluenza virus type 1 (hPIV1) and Sendai virus (SV). Expression of NP from cDNA resulted in in vivo nucleocapsid formation. Electron micrographs showed no significant difference in the morphological appearance of viral nucleocapsids obtained from lysates of transfected cells expressing SV or hPIVI NP cDNA. Coexpression of NP cDNAs from both viruses resulted in the formation of nucleocapsid composed of a mixture of NP molecules; thus, the NPs of both viruses contained regions that allowed the formation of mixed nucleocapsid. Mixed nucleocapsids were also detected in cells infected with SV and transfected with hPIV1 NP cDNA. However, when NP of SV was donated by infected virus and hPIV1 NP was from transfected cDNA, nucleocapsids composed of NPs solely from SV or solely from hPIVI were also detected. Although almost equal amounts of NP of the two viruses were found in the cytoplasm of cells infected with SV and transfected with hPIV1 NP cDNA, 90% of the NPs in the nucleocapsids of the progeny SV virions were from SV. Thus, nucleocapsids containing heterologous hPIV1 NPs were excluded during the assembly of progeny SV virions. Coexpression of hPIV1 NP and hPIV1 matrix protein (M) in SV-infected cells increased the uptake of nucleocapsids containing hPIV1 NP; thus, M appears to be responsible for the specific incorporation of the nucleocapsid into virions. Using SV-hPIV1 chimera NP cDNAs, we found that the C-terminal domain of the NP protein (amino acids 420 to 466) is responsible for the interaction with M.  相似文献   

3.
Industrial use of nanotechnology in daily life has produced an emphasis on the safe and efficient production of nanoparticles (NPs). Traditional chemical oxidation and reduction methods are seen as inefficient, environmentally unsound, and often dangerous to those exposed and involved in NP manufacturing. However, utilizing microorganisms for biosynthesis of NPs allows efficient green production of a range of inorganic NPs, while maintaining specific size, shape, stability, and dispersity. Microorganisms living under harsh environmental conditions, called “Extremophiles,” are one group of microorganisms being utilized for this biosynthesis. Extremophiles’ unique living conditions have endowed them with various processes that enable NP biosynthesis. This includes a range of extremophiles: thermophiles, acidophilus, halophiles, psychrophiles, anaerobes, and some others. Fungi, bacteria, yeasts, and archaea, i.e. Ureibacillus thermosphaericus, and Geobacillus stearothermophilus, among others, have been established for NP biosynthesis. This article highlights the extremophiles and methods found to be viable candidates for the production of varying types of NPs, as well as interpreting selective methods used by the organisms to synthesize NPs.  相似文献   

4.
Nasal polyposis is a multifactorial disease with a strong inflammatory component. Its pathogenesis is often associated with ROS production catalysed by redox-active iron. This study aimed to characterize the roles of iron homeostasis and redox status in the pathogenesis of polyposis. Nasal polyps (NP) from asthmatics and non-asthmatics and turbinates from controls and NP-patients were analysed for ferritin, ferritin-bound iron (FBI) and levels of methionine-centred redox cycle proteins. The ferritin content in both NPs was significantly higher than in adjacent turbinates. No differences in FBI were observed between both NP groups and both turbinates groups, while in NPs it was significantly higher. In NP-turbinates the highest levels of redox proteins were observed. In conclusion, re-distribution of iron occurs upon the development of NP. While FBI is elevated in NPs, the adjacent turbinate remain iron-poor and low-inflammatory, suggesting the formation of virtual boundary between these tissues.  相似文献   

5.
《Free radical research》2013,47(3):366-373
Abstract

Nasal polyposis is a multifactorial disease with a strong inflammatory component. Its pathogenesis is often associated with ROS production catalysed by redox-active iron. This study aimed to characterize the roles of iron homeostasis and redox status in the pathogenesis of polyposis. Nasal polyps (NP) from asthmatics and non-asthmatics and turbinates from controls and NP-patients were analysed for ferritin, ferritin-bound iron (FBI) and levels of methionine-centred redox cycle proteins. The ferritin content in both NPs was significantly higher than in adjacent turbinates. No differences in FBI were observed between both NP groups and both turbinates groups, while in NPs it was significantly higher. In NP-turbinates the highest levels of redox proteins were observed. In conclusion, re-distribution of iron occurs upon the development of NP. While FBI is elevated in NPs, the adjacent turbinate remain iron-poor and low-inflammatory, suggesting the formation of virtual boundary between these tissues.  相似文献   

6.
The Ebola virus nucleoprotein (NP) is an essential component of the nucleocapsid, required for filovirus particle formation and replication. Together with virion protein 35 (VP35) and VP24, this gene product gives rise to the filamentous nucleocapsid within transfected cells. Ebola virus NP migrates aberrantly, with an apparent molecular mass of 115 kDa, although it is predicted to encode an approximately 85-kDa protein. In this report, we show that two domains of this protein determine this aberrant migration and that this region mediates its incorporation into virions. These regions, amino acids 439 to 492 and amino acids 589 to 739, alter the mobility of Ebola virus NP by sodium dodecyl sulfate-polyacrylamide gel electrophoresis by 5 and 15 kDa, respectively, and confer similar effects on a heterologous protein, LacZ, in a position-independent fashion. Furthermore, when coexpressed with VP40, VP35, and VP24, this region mediated incorporation of NP into released viruslike particles. When fused to chimeric paramyxovirus NPs derived from measles or respiratory syncytial virus, this domain directed these proteins into the viruslike particle. The COOH-terminal NP domain comprises a conserved highly acidic region of NP with predicted disorder, distinguishing Ebola virus NPs from paramyxovirus NPs. The acidic character of this domain is likely responsible for its aberrant biochemical properties. These findings demonstrate that this region is essential for the assembly of the filamentous nucleocapsids that give rise to filoviruses.  相似文献   

7.
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.  相似文献   

8.
The biological synthesis of nanoparticles (NPs) by bacteria and biofilms via extracellular redox reactions has received attention because of the minimization of harmful chemicals, low cost, and ease of culturing and downstream processing. Bioreduction mechanisms vary across bacteria and growth conditions, which leads to various sizes and shapes of biosynthesized NPs. NP synthesis in biofilms offers additional advantages, such as higher biomass concentrations and larger surface areas, which can lead to more efficient and scalable biosynthesis. Although biofilms have been used to produce NPs, the mechanistic details of NP formation are not well understood. In this review, we identify three critical areas of research and development needed to advance our understanding of NP production by biofilms: 1) synthesis, 2) mechanism and 3) stabilization. Advancement in these areas could result in the biosynthesis of NPs that are suitable for practical applications, especially in drug delivery and biocatalysis. Specifically, the current status of methods and mechanisms of nanoparticle synthesis and surface stabilization using planktonic bacteria and biofilms is discussed. We conclude that the use of biofilms to synthesize and stabilize NPs is underappreciated and could provide a new direction in biofilm-based NP production.  相似文献   

9.
This study highlights the capacity of atomic force microscopy (AFM) for investigating nanoparticle (NP) algal cell interaction with a subnanometer resolution. We designed a set of AFM experiments to characterize NP size, shape, and structure to visualize changes in the cell morphology induced by NPs and to characterize NP interaction with the extracellular polymeric substance (EPS). Samples for AFM imaging were prepared using the same protocol-drop deposition on mica and imaged in air. Here we address the interactions of Ag NPs with ubiquitous, lightly silicified marine diatoms Cylindrotheca fusiformis and Cylindrotheca closterium and their EPS. In natural seawater used throughout this study, the single Ag NPs adopted truncated tetrahedron morphology with particle heights of 10, 20, 30, and 40 nm. This size class Ag NPs penetrates the cell wall through the valve region built of silica NPs embedded in organic matrix. The Ag NPs cause a local damage inside the cell without disintegration of the cell wall. The EPS production has been shown to increase as a feedback response to Ag NP exposure and may contribute to detoxification mechanisms. Imaging EPS at high resolution revealed the incorporation of Ag NPs and their aggregates into the EPS-gel matrix, proving their detoxifying capacity.  相似文献   

10.
Natriuretic peptides (NPs) have been implicated in cardiovascular regulation in rainbow trout (Oncorhyncus mykiss), and it has been observed that the vasorelaxant activity of distinct trout and human NPs is similar in isolated trout arteries. This study characterizes the response of a variety of vessels from rainbow trout and other salmonids to different NPs. The effects of heterologous (rat atrial and human atrial) and homologous (rainbow trout atrial and rainbow trout ventricular) NPs were examined in precontracted efferent branchial arteries from rainbow trout (O. mykiss, Kamloops strain), lake whitefish (Coregonus clupeaformis), and in rainbow trout celiacomesenteric arteries and anterior cardinal veins. The response to mammalian NPs was also examined in efferent branchial arteries from the steelhead (O. mykiss, Skamania strain), coho salmon (Oncorhyncus kisutch), brook trout (Salvelinus fontinalis), and brown trout (Salmo trutta). In general, there were relatively few differences that were species, peptide, or vessel specific. There was no difference in the sensitivity (concentration producing a half-maximal response EC(50)) or efficacy (percent relaxation, i.e., E(max)) of trout or whitefish efferent branchial arteries to any NP, except human NP, which was significantly less effective (greater EC(50) and lower E(max)) in whitefish arteries. There were no differences in E(max) of mammalian NPs in efferent branchial arteries from any species, and only coho and brook trout had significantly different EC(50)'s (coho, 1.0+/-0.2 nM; brook trout, 4. 2+/-0.6 nM; and other species, from 1.9 to 3.5 nM). Rainbow and coho anterior cardinal veins were less sensitive than arteries to mammalian NPs (EC(50)'s; 8.8+/-2.0, 2.0+/-0.1 vs. 3.0+/-0.9, 1.0+/-0. 2, respectively), whereas brown trout veins were more sensitive (1. 0+/-0.2, 3.5+/-1.3, respectively). Sodium nitroprusside (SNP), which activates soluble guanylate cyclase, was vasodilatory, albeit significantly less potent than all NPs, in efferent branchial arteries of all species. SNP was significantly more potent in trout than whitefish efferent branchial arteries, whereas it was equally efficacious in these vessels. These results demonstrate that multiple vessels from various salmonids are similarly responsive to the vasorelaxant effects of a variety of NPs and that the salmonid NP receptor has relatively little ability to discriminate between homologous and heterologous peptides. We conclude that the vascular NP receptor complex is highly conserved among salmonids. Further, salmonids utilize cyclic guanosine monophosphate (cGMP) elevations for reductions of vascular tonus by both particulate and soluble guanylate cyclase pathways.  相似文献   

11.
Nanoparticles (NPs) have been shown to enhance X-ray radiotherapy and proton therapy of cancer. The effectiveness of radiation damage is enhanced in the presence of high atomic number (high-Z) NPs due to increased production of low energy, higher linear energy transfer (LET) secondary electrons when NPs are selectively internalized by tumour cells. This work quantifies the local dose enhancement produced by the high-Z ceramic oxide NPs Ta2O5 and CeO2, in the target tumour, for the first time in proton therapy, by means of Geant4 simulations. The dose enhancement produced by the ceramic oxides is compared against gold NPs. The energy deposition on a nanoscale around a single nanoparticle of 100 nm diameter is investigated using the Geant4-DNA extension to model particle interactions in the water medium. Enhancement of energy deposition in nano-sized shells of water, local to the NP boundary, ranging between 14% and 27% was observed for proton energies of 5 MeV and 50 MeV, depending on the NP material. Enhancement of electron production and energy deposition can be correlated to the direct DNA damage mechanism if the NP is in close proximity to the nucleus.  相似文献   

12.
The effects of ingestion of engineered nanoparticles (NPs), especially via drinking water, are unknown. Using NPs spiked into synthetic water and cell culture media, we investigated cell death, oxidative stress, and inflammatory effects of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on human intestinal Caco-2 and SW480 cells. ZnO NPs were cytotoxic to both cell lines, while Ag and TiO2 NPs were toxic only at 100 mg/L to Caco-2 and SW480, respectively. ZnO NPs led to significant cell death in synthetic freshwaters with 1 % phosphate-buffered saline in both cell lines, while Ag and TiO2 NPs in buffered water led to cell death in SW480 cells. NP exposures did not yield significant increased reactive oxygen species generation but all NP exposures led to increased IL-8 cytokine generation in both cell lines. These results indicate cell stress and cell death from NP exposures, with a varied response based on NP composition.  相似文献   

13.
Abstract

Molecular dynamics (MD) simulation was applied to investigate the adsorption mechanism of chlortetracycline (CTC) antibiotic molecule as the aqueous pollutant on the Fe3O4 nanoparticle (NP). Two different NP sizes with a diameter of about 1.4?nm and 3.5?nm were selected. Initially, the stability of both NPs in water was investigated by calculating radial distribution function curves of NP atoms. Simulation results confirmed the stable crystallographic structures of both NPs. However, small NP induce greater structural stabilization. Then, CTC molecules were adsorbed on NPs surface in various pollutant concentrations. Electrostatic and hydrogen bond were the major types of interactions between CTC molecules and the adsorbent surface. CTC molecules formed a complex with NP surface from their amine side chains; while they were parallel to each other in their aromatic rings and π-π bond between two CTC molecules was formed. Diffusion rate of CTC molecules could predict the adsorption mechanism. At lower concentration of CTC, CTC molecules tend to adsorb on the NP surface. At these concentrations, the diffusion rate of CTC was high. By increasing the CTC concentration, the pollutant agglomeration was enhanced which decreased the diffusion rate. At this time, the surface of NP was saturated. In addition, the results of isotherm curves showed that CTC adsorption on small NPs could be defined with both Langmuir and Freundlich isotherm models, while Freundlich isotherm model was more appropriate for larger NPs. In conclusion, observations confirmed that MD simulation could successfully predict the behavior of CTC adsorption on the Fe3O4 NP surface.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
The application of conjugated polymer and fullerene water‐based nanoparticles (NP) as ecofriendly inks for organic photovoltaics (OPVs) is reported. A low bandgap polymer diketopyrrolopyrrole–quinquethiophene (PDPP5T‐2) and the methanofullerene PC71BM are processed into three types of nanoparticles: pristine fullerene NPs, pristine polymer NPs, and mixed polymer:fullerene NPs, allowing the formation of bulk heterojunction (BHJ) composites with different domain sizes. Mild thermal annealing is required to melt the nanospheres and enable the formation of interconnected pathways within mixed phases. This BHJ is accompanied by a shrinkage of film, whereas the more compact layers show enhanced mobility. Consistently reduced recombination and better performance are found for mixed NP, containing both, the polymer and the fullerene within a single NP. The optimized solar cell processed by ultrasmall NPs delivers a power conversion efficiency of about 3.4%. This is among the highest values reported for aqueous processed OPVs but still lacks performance compared to those being processed from halogenated solvents. Incomplete crystallization is identified as the main root for reduced efficiency. It is nevertheless believed that postprocessing does not cut attraction from printing aqueous organic NP inks as a trendsetting strategy for the reliable and ecofriendly production of organic solar cells.  相似文献   

15.
Molecular simulation studies on the interaction between nanoparticles (NPs) and cell membranes have been limited by small NP size of several nanometres. In this work, by using a simplified lipid model, we study the endocytosis of large NPs with a size being enlarged to 37.5 nm. It is found that the effect of NP size on endocytosis dynamics depends on the membrane–NP interaction. As the interaction strength between NP and lipid changes, different wrapping modes are observed. For the system with weak membrane–NP attraction, the wrapping process is controlled by the membrane bending, and thus large size of NPs (within the range of NP size we studied) would promote the wrapping dynamics. While for the case with strong membrane–NP adhesion, the wrapping process is dominated by lipid diffusion and small NPs show a larger wrapping rate. In this wrapping mode, the membrane–NP adhesion drives small NPs to move towards the membrane as the wrapping process proceeds. For relatively larger NPs, however, the membrane moves towards the NPs instead. We also find that for the second wrapping mode, the rapid wrapping rate, especially with the hydrophobic ligands on the hydrophilic NP would impose significant perturbations on membrane stability, and consequently, membrane pores may be induced during the process of NP endocytosis.  相似文献   

16.
Nucleoproteins (NPs) encapsidate the Phlebovirus genomic (-)RNA. Upon recombinant expression, NPs tend to form heterogeneous oligomers impeding characterization of the encapsidation process through crystallographic studies. To overcome this problem, we set up a standard protocol in which production under both non-denaturing and denaturing/refolding conditions can be investigated and compared. The protocol was applied for three phlebovirus NPs, allowing an optimized production strategy for each of them. Remarkably, the Rift Valley fever virus NP was purified as a trimer under native conditions and yielded protein crystals whereas the refolded version could be purified as a dimer. Yields of trimeric Toscana virus NP were higher from denaturing than from native condition and lead to crystals. The production of Sandfly Fever Sicilian virus NP failed in both protocols. The comparative protocols described here should help in rationally choosing between denaturing or non-denaturing conditions, which would finally result in the most appropriate and relevant oligomerized protein species. The structure of the Rift Valley fever virus NP has been recently published using a refolded monomeric protein and we believe that the process we devised will contribute to shed light in the genome encapsidation process, a key stage in the viral life cycle.  相似文献   

17.
The potential toxicity of engineered nanoparticles (NPs) for humans and the environment represents an emerging issue. Since the aquatic environment represents the ultimate sink for NP deposition, the development of suitable assays is needed to evaluate the potential impact of NPs on aquatic biota. The immune system is a sensitive target for NPs, and conservation of innate immunity represents an useful basis for studying common biological responses to NPs. Suspension-feeding invertebrates, such as bivalves, are particularly at risk to NP exposure, since they have extremely developed systems for uptake of nano and microscale particles integral to intracellular digestion and cellular immunity. Evaluation of the effects of NPs on functional parameters of bivalve immunocytes, the hemocytes, may help understanding the major toxic mechanisms and modes of actions that could be relevant for different NP types in aquatic organisms.In this work, a battery of assays was applied to the hemocytes of the marine bivalve Mytilus galloprovincialis to compare the in vitro effects of different n-oxides (n-TiO(2), n-SiO(2), n-ZnO, n-CeO(2)) chosen on the basis of their commercial and environmental relevance. Physico-chemical characterization of both primary particles and NP suspensions in artificial sea water-ASW was performed. Hemocyte lysosomal and mitochondrial parameters, oxyradical and nitric oxide production, phagocytic activity, as well as NP uptake, were evaluated. The results show that different n-oxides rapidly elicited differential responses hemocytes in relation to their chemical properties, concentration, behavior in sea water, and interactions with subcellular compartments. These represent the most extensive data so far available on the effects of NPs in the cells of aquatic organisms. The results indicate that Mytilus hemocytes can be utilized as a suitable model for screening the potential effects of NPs in the cells of aquatic invertebrates, and may provide a basis for future experimental work for designing environmentally safer nanomaterials.  相似文献   

18.
Despite the wide interest raised by lung administration of nanoparticles (NPs) for the treatment of various diseases, little information is available on their effect toward the airway epithelial barrier function. In this study, the potential damage of the pulmonary epithelium upon exposure to poly(lactide-co-glycolide) (PLGA) NPs has been assessed in vitro using a Calu-3-based model of the bronchial epithelial barrier. Positively and negatively charged as well as neutral PLGA NPs were obtained by coating their surface with chitosan (CS), poloxamer (PF68), or poly(vinyl alcohol) (PVA). The role of NP surface chemistry and charge on the epithelial resistance and mucus turnover, using MUC5AC as a marker, was investigated. The interaction with mucin reduced the penetration of CS- and PVA-coated NPs, while the hydrophilic PF68-coated NPs diffused across the mucus barrier leading to a higher intracellular accumulation. Only CS-coated NPs caused a transient but reversible decrease of the trans-epithelial electrical resistance (TEER). None of the NP formulations increased MUC5AC mRNA expression or the protein levels. These in vitro results highlight the safety of PLGA NPs toward the integrity and function of the bronchial airway barrier and demonstrate the crucial role of NP surface properties to achieve a controlled and sustained delivery of drugs via the pulmonary route.  相似文献   

19.
20.
Protein kinase (PK)-responsive nanoparticles (NPs) comprising a hydrophobically modified peptide substrate for PKs and a fluorescein-labeled polyanion (pA-F) were reported for monitoring PK activity via fluorescence intensity measurements. In this system, the formation of NPs by mixing lipopeptides and pA-Fs results in fluorescence quenching, while the quenched fluorescence recovered following dissociation of the NPs owing to the phosphorylation reaction of PKs. Eleven lipopeptides with different hydrophobic moieties (hydrocarbon and lithocholic acid) and four pA-Fs having main chains with differing flexibilities and fluorescein contents were synthesized and used to fabricate a series of twenty-four PK-responsive NP probes. The responses of the PK-responsive NP probes to PKs were evaluated to screen the most suitable NP probes. The assay system was then used to determine the IC(50) values for five inhibitors, the results of which were very similar to those previously reported. Thus, PK-responsive NPs are useful tools for high-throughput screening (HTS) of PK inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号