首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During the course of partially synchronized cell divisions in cultured tobacco (Xanthi) cells the amount of endogenous cytokinins in the butanol-soluble fraction increased 5 to 10 times in 3 hours and paralleled the increase in frequency of mitosis. Among three cytokinins detected in tobacco cells, the activity corresponding to the RF of authentic zeatin in thin layer chromatography changed in parallel with the mitotic index.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The significance of cytokinins for the progression of the cell cycle is well known. Cytokinins contribute to the control of the expression of D-cyclins and other cell cycle genes, but knowledge as to how they affect the progression of the cell cycle is still limited. Highly synchronized tobacco BY-2 cells with clearly defined cell cycle stages were employed to determine cytokinin patterns in detail throughout the entire cycle. Concentrations of trans-zeatin, and of some other cytokinins, oscillated during the course of the cell cycle, increasing substantially at all four phase transitions and decreasing again to a minimum value during the course of each subsequent phase. Addition of exogenous cytokinins or inhibition of cytokinin biosynthesis promoted the progression of the cell cycle when the effects of these manipulations intensified the endogenous fluctuations, whereas the progression of the cycle was retarded when the amplitude of the fluctuations was decreased. The results show that the attainment of low concentrations of cytokinins is as important as the transient increases in concentration for a controlled progression from one phase of the cell cycle to the next. Cytokinin oxidase/dehydrogenase activity also showed fluctuations during the course of the cell cycle, the timing of which could at least partly explain oscillations of cytokinin levels. The activities of the enzyme were sufficient to account for the rates of cytokinin disappearance observed subsequent to a phase transition.  相似文献   

10.
11.
Milan Bezděk  Boris Vyskot 《Planta》1981,152(3):215-224
DNA isolated from various Nicotiana tabacum cell types, differing in their degree of hormone autotrophy and incubated in the presence of bromodeoxyuridine (BrdUrd), was analyzed by isopycnic CsCl gradient centrifugation. All cell types incorporate BrdUrd into DNA in such a way that hybrid DNA is formed with 60–80% of thymine (Thy) residues replaced by bromouracil (BrUra) in the newly synthesized strand. This DNA is not replicated further under ordinary culture conditions. Whereas in normal hormone-dependent cells this state is final and cells necrotize, in tumor (cytokinin-auxin autotrophic) and cytokinin-autotrophic cells a mechanism is induced leading to the reduction of BrUra content in DNA. As a result a decrease in the buoyant density (in CsCl) of BrUra DNA can be observed. In the case of cytokinin-autotrophic cells supplemented with kinetin, the buoyant density of the whole DNA decreases gradually to the value of that of unsubstituted DNA, but specific radioactivities of different DNA fractions reflect the retention of the pyrimidine ring of BrUra in DNA. This is interpreted as debromination of DNA in situ. The process can be inhibited by fluorodeoxyuridine (FdUrd) and deoxycytidine (dCyd). Moreover, FdUrd (but not dCyd) allows replication of hybrid DNA in tumor cells in such a way that HH DNA with all Thy residues replaced by BrUra is formed. For cytokinin-autotrophic cells FdUrd and kinetin are required. In hormone-dependent cells replication of hybrid DNA cannot be induced under any conditions. Most of these conclusions complement our previous findings that BrdUrd tolerance in hormone-autotrophic tobacco cells in hormone controlled. It is postulated that a modulation of thymidylate synthetase specificity is one factor affecting the level of BrUra substitution in DNA. The possibility of cytokinins being involved in the control of DNA synthesis is discussed.Abbreviations BrdUrd 5-bromo-2-deoxyuridine - BrUra 5-bromouracil - dCyd 2-deoxycytidine - FdUrd 5-fluoro-2-deoxyuridine - dThd thymidine - Thy thymine - EDTA Na2-ethylenedia-minotetraacetate - IAA idole-3-acetic acid (auxin) - SDS Na-dodecylsulphate - LL, HL, HH DNA light-light (unsubstituted), heavy-light (unifilarly BrUra substituted), heavy-heavy (bifilarly BrUra substituted) DNAs, respectively  相似文献   

12.
13.
T Ooka  J Daillie 《Biochimie》1975,57(2):235-246
We have demonstrated the presence of two DNA polymerases in KB cells and studied the variation of their activities in a synchronous cell population. During the cell cycle we observed in nuclei, only one DNA dependent DNA polymerase, the 3.4 S or minipolymerase, and similarly in the cytoplasm only one enzyme, the 8.3 S or maxipolymerase. The former shows preference for native DNA and the latter for denatured DNA. Their Mg++ and K+ requirements are different and their pH optima are 8.5 and 7 for nuclear polymerase and cytoplasmic polymerase respectively. The cytoplasmic polymerase activity remains stable from one cell cycle to the other with each cell reconstituting its stock at the start of the following cycle (G1 and early S phases). On the contrary nuclear activity decreases in G2, M and early G1, then increases to a maximum in the middle of the S phase. This fluctuation in enzyme activity could be due to degradation, transfer to the cytoplasm or the association of the enzyme with the chromatin and/or the nuclear membrane after completion of DNA synthesis. Our results do not permit us to choose between these three hypotheses. However their significance is discussed in the light of the results obtained by some authors who, on the contrary, have tended to minimise the role of the minipolymerase in DNA duplication, whereas we, from our findings, ascribe a preponderant role to this enzyme. The cytoplasmic maxipolymerase (8.3 S) may simply be a storage form of the enzyme from which minipolymerase can be formed as needed.  相似文献   

14.
Tongue keratinocytes have a high mitotic index (MI) with an evident circadian variation. Our study set out to compare and contrast two phases of the cell cycle: DNA synthesis (S-phase), with inmunocytochemical detection by bromodeoxyuridine (BrdU), and mitosis (M-phase), by the colchicine-arrest of metaphase method, exploring both the dorsal and ventral surfaces of the mouse tongue throughout a circadian period. Adult male mice standardized for light periodicity used for MI experiment were injected intraperitoneally with colchicine. Other animals were injected intraperitoneally with 5-BrdU for S-phase determination. Animals given both treatments were divided into six groups and killed at 4 h intervals until 20:00 h. Tongue samples were processed for histology and immuno-histochemistry. S and M indices were expressed as labelled nuclei or colchicine metaphases, respectively, per 1000 nuclei. Peak MI occurred at 12:00, with the minimum value at 20:00 on dorsal and ventral tongue surfaces. Peak S-phase was at 04:00, whereas the minimum value was at 16:00 for both surfaces. These results show that the proliferative activity of the tongue epithelium is of similar intensity and temporal distribution on both surfaces.  相似文献   

15.
16.
TRITC-labelled phalloidin was used to visualize F-actin distribution during mitosis in Nicotiana tabacum BY-2 suspension cells. Aphidicolin was used to synchronize cell suspensions, which enabled sufficient numbers of mitotic cells to be obtained. F-actin was present in the spindle, and its orientation seemed to correlate with the known microtubular arrays. The use of confocal microscopy greatly reduced background fluorescence, and therefore fine actin filaments could be observed in spindles previously thought to be devoid of actin.  相似文献   

17.
18.
Summary The varying sensitivity to radiation in the different phases of the cell cycle was investigated using L-929 cells of the mouse. The cells were synchronized by mechanical selection of mitotic cells. The synchronous populations were X-irradiated with a single dose of 10 Gy in the middle of the G1-phase, at the G1/S-transition or in the middle of the S-phase, respectively. The radiation effect was determined in 2 h intervals a) by14C-TdR incorporation (IT) into the DNA, b) by autoradiography (AR), c) by flow cytometry (FCM). The incorporation rate decreased in all three cases, but the reasons appeared to be different, as can be derived from FCM and AR data: After irradiation in G1, a fraction of cells was prevented from entering S-phase, after irradiation at G1/S a proportion of cells was blocked in the S-phase, and after irradiation in S, DNA synthesis rate was reduced. As a consequence of these effects, the mean transition time through S-phase increased. The G2 blocks, obtained after irradiation at the three stages of the cycle were also different: Cells irradiated in G1 are partly released from the block after 10 h. Irradiation at G1/S caused a persisting accumulation of 50% of the cells in G2, and for irradiation in S more than 80% of the cells were arrested in G2.  相似文献   

19.
20.
Relatively little is known about the mechanisms used by somatic cells to regulate the replication of the centrosome complex. Centrosome doubling was studied in CHO cells by electron microscopy and immunofluorescence microscopy using human autoimmune anticentrosome antiserum, and by Northern blotting using the cDNA encoding portion of the centrosome autoantigen pericentriolar material (PCM)-1. Centrosome doubling could be dissociated from cycles of DNA synthesis and mitotic division by arresting cells at the G1/S boundary of the cell cycle using either hydroxyurea or aphidicolin. Immunofluorescence micros-copy using SPJ human autoimmune anticentrosome antiserum demonstrated that arrested cells were able to undergo numerous rounds of centrosome replication in the absence of cycles of DNA synthesis and mitosis. Northern blot analysis demonstrated that the synthesis and degradation of the mRNA encoding PCM-1 occurred in a cell cycle-dependent fashion in CHO cells with peak levels of PCM-1 mRNA being present in G1 and S phase cells before mRNA amounts dropped to undetectable levels in G2 and M phases. Conversely, cells arrested at the G1/S boundary of the cell cycle maintained PCM-1 mRNA at artificially elevated levels, providing a possible molecular mechanism for explaining the multiple rounds of centrosome replication that occurred in CHO cells during prolonged hydroxyurea-induced arrest. The capacity to replicate centrosomes could be abolished in hydroxyurea-arrested CHO cells by culturing the cells in dialyzed serum. However, the ability to replicate centrosomes and to synthesize PCM-1 mRNA could be re- initiated by adding EGF to the dialyzed serum. This experimental system should be useful for investigating the positive and negative molecular mechanisms used by somatic cells to regulate the replication of centrosomes and for studying and the methods used by somatic cells for coordinating centrosome duplication with other cell cycle progression events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号