首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.  相似文献   

2.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin and non-heme iron-dependent enzyme that hydroxylates L-Phe to l-Tyr using molecular oxygen as additional substrate. A dysfunction of this enzyme leads to phenylketonuria (PKU). The conformation and distances to the catalytic iron of both L-Phe and the cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) simultaneously bound to recombinant human PAH have been estimated by (1)H NMR. The resulting bound conformers of both ligands have been fitted into the crystal structure of the catalytic domain by molecular docking. In the docked structure L-Phe binds to the enzyme through interactions with Arg270, Ser349 and Trp326. The mode of coordination of Glu330 to the iron moiety seems to determine the amino acid substrate specificity in PAH and in the homologous enzyme tyrosine hydroxylase. The pterin ring of BH2 pi-stacks with Phe254, and the N3 and the amine group at C2 hydrogen bond with the carboxylic group of Glu286. The ring also establishes specific contacts with His264 and Leu249. The distance between the O4 atom of BH2 and the iron (2.6(+/-0.3) A) is compatible with coordination, a finding that is important for the understanding of the mechanism of the enzyme. The hydroxyl groups in the side-chain at C6 hydrogen bond with the carbonyl group of Ala322 and the hydroxyl group of Ser251, an interaction that seems to have implications for the regulation of the enzyme by substrate and cofactor. Some frequent mutations causing PKU are located at residues involved in substrate and cofactor binding. The sites for hydroxylation, C4 in L-Phe and C4a in the pterin are located at a distance of 4.2 and 4.3 A from the iron moiety, respectively, and at 6.3 A from each other. These distances are adequate for the intercalation of iron-coordinated molecular oxygen, in agreement with a mechanistic role of the iron moiety both in the binding and activation of dioxygen and in the hydroxylation reaction.  相似文献   

3.
Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O 2, and tetrahydrobiopterin (BH 4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 A resolution crystal structure of the catalytic domain (Delta1-100/Delta415-445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 A between the iron and the tryptophan Czeta3 atom that is hydroxylated. The binding of tryptophan and maybe the imidazole has caused the structural changes in the catalytic domain compared to the structure of the human TPH1 without tryptophan. The structure of chicken TPH1 is more compact, and the loops of residues Leu124-Asp139 and Ile367-Thr369 close around the active site. Similar structural changes are seen in the catalytic domain of phenylalanine hydroxylase (PAH) upon binding of substrate analogues norleucine and thienylalanine to the PAH.BH 4 complex. In fact, the chicken TPH1.Trp.imidazole structure resembles the PAH.BH 4.thienylalanine structure more (root-mean-square deviation for Calpha atoms of 0.90 A) than the human TPH1 structure (root-mean-square deviation of 1.47 A).  相似文献   

4.
The crystal structures of the catalytic domain of human phenylalanine hydroxylase (hPheOH) in complex with the physiological cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and the substrate analogues 3-(2-thienyl)-L-alanine (THA) or L-norleucine (NLE) have been determined at 2.0A resolution. The ternary THA complex confirms a previous 2.5A structure, and the ternary NLE complex shows that similar large conformational changes occur on binding of NLE as those observed for THA. Both structures demonstrate that substrate binding triggers structural changes throughout the entire protomer, including the displacement of Tyr138 from a surface position to a buried position at the active site, with a maximum displacement of 20.7A for its hydroxyl group. Two hinge-bending regions, centred at Leu197 and Asn223, act in consort upon substrate binding to create further large structural changes for parts of the C terminus. Thus, THA/L-Phe binding to the active site is likely to represent the epicentre of the global conformational changes observed in the full-length tetrameric enzyme. The carboxyl and amino groups of THA and NLE are positioned identically in the two structures, supporting the conclusion that these groups are of key importance in substrate binding, thus explaining the broad non-physiological substrate specificity observed for artificially activated forms of the enzyme. However, the specific activity with NLE as the substrate was only about 5% of that with THA, which is explained by the different affinities of binding and different catalytic turnover.  相似文献   

5.
Tryptophan hydroxylase (TPH) carries out the 5-hydroxylation of L-Trp, which is the rate-limiting step in the synthesis of serotonin. We have prepared and characterized a stable N-terminally truncated form of human TPH that includes the catalytic domain (Delta90TPH). We have also determined the conformation and distances to the catalytic non-heme iron of both L-Trp and the tetrahydrobiopterin cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) bound to Delta90TPH by using 1H NMR spectroscopy. The bound conformers of the substrate and the pterin were then docked into the modeled three-dimensional structure of TPH. The resulting ternary TPH-BH2-L-Trp structure is very similar to that previously determined by the same methods for the complex of phenylalanine hydroxylase (PAH) with BH2 and L-Phe [Teigen, K., et al. (1999) J. Mol. Biol. 294, 807-823]. In the model, L-Trp binds to the enzyme through interactions with Arg257, Ser336, His272, Phe318, and Phe313, and the ring of BH2 interacts mainly with Phe241 and Glu273. The distances between the hydroxylation sites at C5 in L-Trp and C4a in the pterin, i.e., 6.1 +/- 0.4 A, and from each of these sites to the iron, i.e., 4.1 +/- 0.3 and 4.4 +/- 0.3 A, respectively, are also in agreement with the formation of a transient iron-4a-peroxytetrahydropterin in the reaction, as proposed for the other hydroxylases. The different conformation of the dihydroxypropyl chain of BH2 in PAH and TPH seems to be related to the presence of nonconserved residues, i.e., Tyr235 and Pro238 in TPH, at the cofactor binding site. Moreover, Phe313, which seems to interact with the substrate through ring stacking, corresponds to a Trp residue in both tyrosine hydroxylase and PAH (Trp326) and appears to be an important residue for influencing the substrate specificity in this family of enzymes. We show that the W326F mutation in PAH increases the relative preference for L-Trp as the substrate, while the F313W mutation in TPH increases the preference for L-Phe, possibly by a conserved active site volume effect.  相似文献   

6.
The crystal structure of the dimeric catalytic domain (residues 118-424) of human PheOH (hPheOH), cocrystallized with the oxidized form of the cofactor (7,8-dihydro-L-biopterin, BH(2)), has been determined at 2.0 A resolution. The pterin binds in the second coordination sphere of the catalytic iron (the C4a atom is 6.1 A away), and interacts through several hydrogen bonds to two water molecules coordinated to the iron, as well as to the main chain carbonyl oxygens of Ala322, Gly247, and Leu249 and the main chain amide of Leu249. Some important conformational changes are seen in the active site upon pterin binding. The loop between residues 245 and 250 moves in the direction of the iron, and thus allows for several important hydrogen bonds to the pterin ring to be formed. The pterin cofactor is in an ideal orientation for dioxygen to bind in a bridging position between the iron and the pterin. The pterin ring forms an aromatic pi-stacking interaction with Phe254, and Tyr325 contributes to the positioning of the pterin ring and its dihydroxypropyl side chain by hydrophobic interactions. Of particular interest in the hPheOH x BH(2) binary complex structure is the finding that Glu286 hydrogen bonds to one of the water molecules coordinated to the iron as well as to a water molecule which hydrogen bonds to N3 of the pterin ring. Site-specific mutations of Glu286 (E286A and E286Q), Phe254 (F254A and F254L), and Tyr325 (Y325F) have confirmed the important contribution of Glu286 and Phe254 to the normal positioning of the pterin cofactor and catalytic activity of hPheOH. Tyr325 also contributes to the correct positioning of the pterin, but has no direct function in the catalytic reaction, in agreement with the results obtained with rat TyrOH [Daubner, S. C., and Fitzpatrick, P. F. (1998) Biochemistry 37, 16440-16444]. Superposition of the binary hPheOH.BH(2) complex onto the crystal structure of the ligand-free rat PheOH (which contains the regulatory and catalytic domains) [Kobe, B., Jennings, I. G., House, C. M., Michell, B. J., Goodwill, K. E., Santarsiero, B. D., Stevens, R. C., Cotton, R. G. H., and Kemp, B. E. (1999) Nat. Struct. Biol. 6, 442-448] reveals that the C2'-hydroxyl group of BH(2) is sufficiently close to form hydrogen bonds to Ser23 in the regulatory domain. Similar interactions are seen with the hPheOH.adrenaline complex and Ser23. These interactions suggest a structural explanation for the specific regulatory properties of the dihydroxypropyl side chain of BH(4) (negative effector) in the full-length enzyme in terms of phosphorylation of Ser16 and activation by L-Phe.  相似文献   

7.
Tetrahydropterins are obligatory cofactors for tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. A series of synthetic analogues of 6(R)-L-erythro-5,6,7, 8-tetrahydrobiopterin (BH(4)) with different substituents in positions C2, N3, C4, N5, C6, C7, and N8 on the ring were used as active site probes for recombinant human TH. The enzyme tolerates rather bulky substituents at C6, as seen by the catalytic efficiency (V(max)/K(m)) and the coupling efficiency (mol of L-DOPA produced/mol of tetrahydropterin oxidized) of the cofactors. Substitutions at C2, C4, N5, and N8 abolish the cofactor activity of the pterin analogues. Molecular docking of BH(4) into the crystal structure of the catalytic domain of ligand-free rat TH results in complexes in which the pteridine ring pi-stacks with Phe300 and the N3 and the amino group at C2 hydrogen bonds with Glu332. The pteridine ring also establishes interactions with Leu294 and Gln310. The distance between C4a in the pteridines and the active site iron was 4.2 +/- 0.5 A for the ensemble of docked conformers. Docking of BH(4) analogues into TH also shows that the most bulky substituents at C6 can be well-accommodated within the large hydrophobic pocket surrounded by Ala297, Ser368, Tyr371, and Trp372, without altering the positioning of the ring. The pterin ring of 7-BH(4) shows proper stacking with Phe300, but the distance between the C4a and the active site iron is 0.6 A longer than for bound BH(4), a finding that may be related to the high degree of uncoupling observed for 7-BH(4).  相似文献   

8.
Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.  相似文献   

9.
Pantothenate kinase generates 4′‐phosphopantothenate in the first and rate‐determining step of coenzyme A (CoA) biosynthesis. The human genome encodes three well‐characterized and nearly identical pantothenate kinases (PANK1‐3) plus a putative bifunctional protein (PANK4) with a predicted amino‐terminal pantothenate kinase domain fused to a carboxy‐terminal phosphatase domain. Structural and phylogenetic analyses show that all active, characterized PANKs contain the key catalytic residues Glu138 and Arg207 (HsPANK3 numbering). However, all amniote PANK4s, including human PANK4, encode Glu138Val and Arg207Trp substitutions which are predicted to inactivate kinase activity. Biochemical analysis corroborates bioinformatic predictions—human PANK4 lacks pantothenate kinase activity. Introducing Glu138Val and Arg207Trp substitutions to the human PANK3 and plant PANK4 abolished their robust pantothenate kinase activity. Introducing both catalytic residues back into human PANK4 restored kinase activity, but only to a low level. This result suggests that epistatic changes to the rest of the protein already reduced the kinase activity prior to mutation of the catalytic residues in the course of evolution. The PANK4 from frog, an anamniote living relative encoding the catalytically active residues, had only a low level of kinase activity, supporting the view that HsPANK4 had reduced kinase activity prior to the catalytic residue substitutions in amniotes. Together, our data show that human PANK4 is a pseudo‐pantothenate kinase—a catalytically deficient variant of the catalytically active PANK4 found in plants and fungi. The Glu138Val and Arg207Trp substitutions in amniotes (HsPANK3 numbering) completely deactivated the pantothenate kinase activity that had already been reduced by prior epistatic mutations.  相似文献   

10.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin-dependent enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine using dioxygen as an additional substrate. The requirement of PAH for a cofactor is absolute, but several cofactor analogs are able to substitute the natural cofactor in catalysis. However, it is only the natural cofactor 6R-tetrahydrobiopterin (6R-BH(4)) that induces a negative regulatory effect on the enzyme. In order to get further insights on the molecular basis for this specificity, we studied the structure of the cofactor-enzyme complex and the conformational changes induced by cofactor binding by molecular dynamics simulations. Simulations were carried out on the enzyme alone and complexed with 6R-BH(4) and with two cofactor analogs, 6S-BH(4) and 6-methyl-tetrahydropterin (6M-PH(4)). In the resting unbound enzyme Tyr377 in the catalytic domain is hydrogen bonded to both Ser23 and Glu21 of the autoregulatory N-terminal sequence. This hydrogen bonding network is disturbed by the binding of BH(4), which interacts with Ser23. By doing so, 6R-BH(4) facilitates an interaction between Glu21 and the active site iron, further pulling the N-terminal into the active site of PAH and blocking the L-Phe binding site. Thus, in the 6R-BH(4) complexed enzyme, the N-terminal functions as an intrinsic amino acid regulatory sequence (IARS). Neither 6M-PH(4) nor 6S-BH(4) can interact favorably with Ser23, and do not induce an inhibitory effect on PAH. These simulations thus explain the previous findings that the two hydroxyl groups in the side chain of the 6R epimer of BH(4) are essential for the inhibitory regulatory effect on PAH.  相似文献   

11.
BACKGROUND: Sphingomonas paucimobilis SYK-6 utilizes an extradiol-type catecholic dioxygenase, the LigAB enzyme (a protocatechuate 4,5-dioxygenase), to oxidize protocatechuate (or 3,4-dihydroxybenzoic acid, PCA). The enzyme belongs to the family of class III extradiol-type catecholic dioxygenases catalyzing the ring-opening reaction of protocatechuate and related compounds. The primary structure of LigAB suggests that the enzyme has no evolutionary relationship with the family of class II extradiol-type catecholic dioxygenases. Both the class II and class III enzymes utilize a non-heme ferrous center for adding dioxygen to the substrate. By elucidating the structure of LigAB, we aimed to provide a structural basis for discussing the function of class III enzymes. RESULTS: The crystal structure of substrate-free LigAB was solved at 2.2 A resolution. The molecule is an alpha2beta2 tetramer. The active site contains a non-heme iron coordinated by His12, His61, Glu242, and a water molecule located in a deep cleft of the beta subunit, which is covered by the alpha subunit. Because of the apparent oxidation of the Fe ion into the nonphysiological Fe(III) state, we could also solve the structure of LigAB complexed with a substrate, PCA. The iron coordination sphere in this complex is a distorted tetragonal bipyramid with one ligand missing, which is presumed to be the O2-binding site. CONCLUSIONS: The structure of LigAB is completely different from those of the class II extradiol-type dioxygenases exemplified by the BphC enzyme, a 2,3-dihydroxybiphenyl 1,2-dioxygenase from a Pseudomonas species. Thus, as already implicated by the primary structures, no evolutionary relationship exists between the class II and III enzymes. However, the two classes of enzymes share many geometrical characteristics with respect to the nature of the iron coordination sphere and the position of a putative catalytic base, strongly suggesting a common catalytic mechanism.  相似文献   

12.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4)) and non-heme iron-dependent enzyme that hydroxylates L-Phe to L-Tyr. The paramagnetic ferric iron at the active site of recombinant human PAH (hPAH) and its midpoint potential at pH 7.25 (E(m)(Fe(III)/Fe(II))) were studied by EPR spectroscopy. Similar EPR spectra were obtained for the tetrameric wild-type (wt-hPAH) and the dimeric truncated hPAH(Gly(103)-Gln(428)) corresponding to the "catalytic domain." A rhombic high spin Fe(III) signal with a g value of 4.3 dominates the EPR spectra at 3.6 K of both enzyme forms. An E(m) = +207 +/- 10 mV was measured for the iron in wt-hPAH, which seems to be adequate for a thermodynamically feasible electron transfer from BH(4) (E(m) (quinonoid-BH(2)/BH(4)) = +174 mV). The broad EPR features from g = 9.7-4.3 in the spectra of the ligand-free enzyme decreased in intensity upon the addition of L-Phe, whereas more axial type signals were observed upon binding of 7,8-dihydrobiopterin (BH(2)), the stable oxidized form of BH(4), and of dopamine. All three ligands induced a decrease in the E(m) value of the iron to +123 +/- 4 mV (L-Phe), +110 +/- 20 mV (BH(2)), and -8 +/- 9 mV (dopamine). On the basis of these data we have calculated that the binding affinities of L-Phe, BH(2), and dopamine decrease by 28-, 47-, and 5040-fold, respectively, for the reduced ferrous form of the enzyme, with respect to the ferric form. Interestingly, an E(m) value comparable with that of the ligand-free, resting form of wt-hPAH, i.e. +191 +/- 11 mV, was measured upon the simultaneous binding of both L-Phe and BH(2), representing an inactive model for the iron environment under turnover conditions. Our findings provide new information on the redox properties of the active site iron relevant for the understanding of the reductive activation of the enzyme and the catalytic mechanism.  相似文献   

13.
Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) catalyzes the reversible oxidation of secondary alcohols to the corresponding ketones using NADP(+) as the cofactor. The active site of the enzyme contains a zinc ion that is tetrahedrally coordinated by four protein residues. The enzymatic reaction leads to the formation of a ternary enzyme-cofactor-substrate complex; and catalytic hydride ion transfer is believed to take place directly between the substrate and cofactor at the ternary complex. Although crystallographic data of TbADH and other alcohol dehydrogenases as well as their complexes are available, their mode of action remains to be determined. It is firmly established that the zinc ion is essential for catalysis. However, there is no clear agreement about the coordination environment of the metal ion and the competent reaction intermediates during catalysis. We used a combination of X-ray absorption, circular dichroism (CD), and fluorescence spectroscopy, together with structural analysis and modeling studies, to investigate the ternary complexes of TbADH that are bound to a transition-state analogue inhibitor. Our structural and spectroscopic studies indicated that the coordination sphere of the catalytic zinc site in TbADH undergoes conformational changes when it binds the inhibitor and forms a pentacoordinated complex at the zinc ion. These studies provide the first active site structure of bacterial ADH bound to a substrate analogue. Here, we suggest the active site structure of the central intermediate complex and, more specifically, propose the substrate-binding site in TbADH.  相似文献   

14.
Phenylalanine hydroxylase converts phenylalanine to tyrosine utilizing molecular oxygen and tetrahydropterin as a cofactor, and belongs to the aromatic amino acid hydroxylases family. The catalytic domains of these enzymes are structurally similar. According to recent crystallographic studies, residue Tyr179 in Chromobacterium violaceum phenylalanine hydroxylase is located in the active site and its hydroxyl oxygen is 5.1 Å from the iron, where it has been suggested to play a role in positioning the pterin cofactor. To determine the catalytic role of this residue, the point mutants Y179F and Y179A of phenylalanine hydroxylase were prepared and characterized. Both mutants displayed comparable stability and metal binding to the native enzyme, as determined by their melting temperatures in the presence and absence of iron. The catalytic activity (kcat) of the Y179F and Y179A proteins was lower than wild-type phenylalanine hydroxylase by an order of magnitude, suggesting that the hydroxyl group of Tyr179 plays a role in the rate-determining step in catalysis. The KM values for different tetrahydropterin cofactors and phenylalanine were decreased by a factor of 3–4 in the Y179F mutant. However, the KM values for different pterin cofactors were slightly higher in the Y179A mutant than those measured for the wild-type enzyme, and, more significantly, the KM value for phenylalanine was increased by 10-fold in the Y179A mutant. By the criterion of kcat/KPhe, the Y179F and Y179A mutants display 10% and 1%, respectively, of the activity of wild-type phenylalanine hydroxylase. These results are consistent with Tyr179 having a pronounced role in binding phenylalanine but a secondary effect in the formation of the hydroxylating species. In conjunction with recent crystallographic analyses of a ternary complex of phenylalanine hydroxylase, the reported findings establish that Tyr179 is essential in maintaining the catalytic integrity and phenylalanine binding of the enzyme via indirect interactions with the substrate, phenylalanine. A model that accounts for the role of Tyr179 in binding phenylalanine is proposed.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations AAAHs aromatic amino acid hydroxylases - BH2 7,8-dihydro-l-biopterin - BH4 (6R)-5,6,7,8-tetrahydro-l-biopterin - CD circular dichroism - cPAH Chromobacterium violaceum phenylalanine hydroxylase - DMPH4 6,7-dimethyl-5,6,7,8-tetrahydropterin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - ES-MS electrospray ionization mass spectrometry - hPAH human phenylalanine hydroxylase - ICP-AE inductively coupled plasma atomic emission - 6-MPH4 6-methyl-5,6,7,8-tetrahydropterin - PAH phenylalanine hydroxylase - PH4 tetrahydropterin - PKU phenylketonuria - RDS rate-determining step - TH tyrosine hydroxylase - THA 3-(2-thienyl)-l-alanine - TPH tryptophan hydroxylase - wt wild-type  相似文献   

15.
The characteristic of cold-adapted enzymes, high catalytic efficiency at low temperatures, is often associated with low thermostability and high flexibility. In this context, we analyzed the catalytic properties and solved the crystal structure of phenylalanine hydroxylase from the psychrophilic bacterium Colwellia psychrerythraea 34H (CpPAH). CpPAH displays highest activity with tetrahydrobiopterin (BH(4)) as cofactor and at 25 degrees C (15 degrees C above the optimal growth temperature). Although the enzyme is monomeric with a single L-Phe-binding site, the substrate binds cooperatively. In comparison with PAH from mesophilic bacteria and mammalian organisms, CpPAH shows elevated [S(0.5)](L-Phe) (= 1.1 +/- 0.1 mm) and K(m)(BH(4))(= 0.3 +/- 0.1 mm), as well as high catalytic efficiency at 10 degrees C. However, the half-inactivation and denaturation temperature is only slightly lowered (T(m) approximately 52 degrees C; where T(m) is half-denaturation temperature), in contrast to other cold-adapted enzymes. The crystal structure shows regions of local flexibility close to the highly solvent accessible binding sites for BH(4) (Gly(87)/Phe(88)/Gly(89)) and l-Phe (Tyr(114)-Pro(118)). Normal mode and COREX analysis also detect these and other areas with high flexibility. Greater mobility around the active site and disrupted hydrogen bonding abilities for the cofactor appear to represent cold-adaptive properties that do not markedly affect the thermostability of CpPAH.  相似文献   

16.
Human tyrosine 3-monooxygenase (tyrosine hydroxylase) exists as four different isozymes (TH1-TH4), generated by alternative splicing of pre-mRNA. Recombinant TH1, TH2 and TH4 were expressed in high yield in Escherichia coli. The purified isozymes revealed high catalytic activity [when reconstituted with Fe(II)] and stability at neutral pH. The isozymes as isolated contained 0.04-0.1 atom iron and 0.02-0.06 atom zinc/enzyme subunit. All three isozymes were rapidly activated (13-40-fold) by incubation with Fe(II) salts (concentration of iron at half-maximal activation = 6-14 microM), and were inhibited by other divalent metal ions, e.g. Zn(II), Co(II) and Ni(II). They all bind stoichiometric amounts of Fe(II) and Zn(II) with high affinity (Kd = 0.2-3 microM at pH 5.4-6.5). Similar time courses were observed for binding of Fe(II) and enzyme activation. In the absence of any free Fe(II) or Zn(II), the metal ions were released from the reconstituted isozymes. The dissociation was favoured by acidic pH, as well as by the presence of metal chelators and dithiothreitol. The potency of metal chelators to remove iron from the hydroxylase correlated with their ability to inhibit the enzyme activity. These studies show that tyrosine hydroxylase binds iron reversibly and that its catalytic activity is strictly dependent on the presence of this metal.  相似文献   

17.
The metabolism of Thiobacillus ferrooxidans involves electron transfer from the Fe+2 ions in the extracellular environment to the terminal oxygen in the bacterial cytoplasm through a series of periplasmic proteins like Rusticyanin (RCy), Cytochrome (Cyt c4), and Cytochrome oxidase (CcO). The energy minimization and MD studies reveal the stabilization of the three redox proteins in their ternary complex through the direct and water mediated H-bonds and electrostatic interaction. The surface exposed polar residues of the three proteins, i.e., RCy (His 143, Thr 146, Lys 81, Glu 20), Cyt c4 (Asp 5, 15, 52, Ser 14, Glu 61), and CcO (Asp 135, Glu 126, 140, 142, Thr 177) formed the intermolecular hydrogen bonds and stabilized the ternary complex. The oxygen (Oepsilon1) of Glu 126, 140, and 142 on subunit II of the CcO interact to the exposed side-chain and Ob atoms of the Asp 52 of Cyt c4 and Glu 20 and Leu 12 of RCy. The Asp 135 of subunit II also forms H-bond with the Nepsilon atom of Lys 81 of RCy. The Oepsilon1 of Glu 61 of Cyt c4 is also H-bonded to Ogamma atom of Thr 177 of CcO. Solvation followed by MD studies of the ternary protein complex revealed the presence of seven water molecules in the interfacial region of the interacting proteins. Three of the seven water molecules (W 79, W 437, and W 606) bridged the three proteins by forming the hydrogen bonded network (with the distances approximately 2.10-2.95 A) between the Lys 81 (RCy), Glu 61 (Cyt c4), and Asp 135 (CcO). Another water molecule W 603 was H-bonded to Tyr 122 (CcO) and interconnected the Lys 81 (RCy) and Asp 135 (CcO) through the water molecules W 606 and W 437. The other two water molecules (W 21 and W 455) bridged the RCy to Cyt c4 through H-bonds, whereas the remaining W 76 interconnected the His 53 (Cytc4) to Glu 126 (CcO) with distances approximately 2.95-3.0 A.  相似文献   

18.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4))-dependent enzyme that catalyzes the hydroxylation of l-Phe to l-Tyr. The non-heme iron in the enzyme (Fe(III) as isolated) is 6-coordinated to a 2-His-1-carboxylate motif and three water molecules (wat1, wat2 and wat3). Tyr325 is at the second coordination sphere, hydrogen-bonded to water (wat1). We prepared and expressed mutants with Leu, Ala, Ser and Phe at this position. Only Y325L and the conservative mutation Y325F resulted in stable enzymes, but the mutant Y325F has been found to be post-translationally hydroxylated and to revert back to wild-type PAH [S.D. Kinzie, M. Thevis, K. Ngo, J. Whitelegge, J.A. Loo, M.M. Abu-Omar, J. Am. Chem. Soc. 125 (2003) 4710-4711], being inadequate to investigate the early inferred functional role of Tyr325. On the other hand, compared to wild-type PAH, Y325L shows reduced specific activity, decreased coupling efficiency and decreased iron content. The mutant also reveals a very high affinity for l-Phe and BH(4) and does not manifest positive cooperativity for the substrate. All together, our results support that the mutation Y325L causes the removal or increased delocalization of the iron-ligated wat1 and, in turn, a less tight binding of the metal. Tyr325 thus appears to have an important role ensuring stoichiometric binding of iron, correct geometry of the complexes with substrate and cofactor and, consequently, a right coupling efficiency of the PAH reaction. In addition, the residue appears to be important for the correct cooperative regulation by l-Phe.  相似文献   

19.
Rv0242c, also known as FabG4, is a beta-ketoacyl CoA reductase in Mycobacterium tuberculosis. The crystal structure of C-terminal truncated FabG4 is solved at 2.5? resolution which shows the presence of two distinct domains, domain I and II. Domain I partially resembles "flavodoxin type domain" and the domain II is a typical "ketoacyl CoA reductase (KAR) domain". The enzyme exhibits ketoacyl CoA reductase activity by reducing acetoacyl CoA to 3-hydroxyacyl CoA in presence of NADH. Conserved catalytic triad Ser347, Tyr360, and Lys364 constitute the active site residues of the KAR domain. Presence of the Tyr and the Lys residues in the triad in a particular orientation is imperative for effective catalytic mechanism. The importance of loop I and II and the role of the C-terminal residues of KAR domain are highlighted. Comparative structural analyses clearly demonstrate that loop II is stabilized by hydrophobic interaction with C-terminal residues to sustain the orientation of Tyr360. Loop I interacts with loop II via H-bonding network to restrict the active site residue Lys364 in a catalytically favorable orientation.  相似文献   

20.
Drosophila alcohol dehydrogenase belongs to the short chain dehydrogenase/reductase (SDR) family which lack metal ions in their active site. In this family, it appears that the three amino acid residues, Ser138, Tyr151 and Lys155 have a similar function as the catalytic zinc in medium chain dehydrogenases. The present work has been performed in order to obtain information about the function of these residues. To obtain this goal, the pH and temperature dependence of various kinetic coefficients of the alcohol dehydrogenase from Drosophila lebanonensis was studied and three-dimensional models of the ternary enzyme-coenzyme-substrate complexes were created from the X-ray crystal coordinates of the D. lebanonensis ADH complexed with either NAD(+) or the NAD(+)-3-pentanone adduct. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD(+) complex, with a DeltaHion value of 74(+/-4) kJ/mol (18(+/-1) kcal/mol). Based on this result and the constructed three-dimensional models of the enzyme, the most likely candidate for this catalytic residue is Ser138. The present kinetic study indicates that the role of Lys155 is to lower the pKa values of both Tyr151 and Ser138 already in the free enzyme. In the binary enzyme-NAD(+) complex, the positive charge of the nicotinamide ring in the coenzyme further lowers the pKa values and generates a strong base in the two negatively charged residues Ser138 and Tyr151. With the OH group of an alcohol close to the Ser138 residue, an alcoholate anion is formed in the ternary enzyme NAD(+) alcohol transition state complex. In the catalytic triad, along with their effect on Ser138, both Lys155 and Tyr151 also appear to bind and orient the oxidized coenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号