首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the present study the contribution of lipoprotein lipase (LPL) to low density lipoprotein (LDL) holoparticle and LDL-lipid (alpha-tocopherol (alphaTocH)) turnover in primary porcine brain capillary endothelial cells (BCECs) was investigated. The addition of increasing LPL concentrations to BCECs resulted in up to 11-fold higher LDL holoparticle cell association. LPL contributed to LDL holoparticle turnover, an effect that was substantially increased in response to LDL-receptor up-regulation. The addition of LPL increased selective uptake of LDL-associated alphaTocH in BCECs up to 5-fold. LPL-dependent selective alphaTocH uptake was unaffected by the lipase inhibitor tetrahydrolipstatin but was substantially inhibited in cells where proteoglycan sulfation was inhibited by treatment with NaClO(3). Thus, selective uptake of LDL-associated alphaTocH requires interaction of LPL with heparan-sulfate proteoglycans. Although high level adenoviral overexpression of scavenger receptor BI (SR-BI) in BCECs resulted in a 2-fold increase of selective LDL-alphaTocH uptake, SR-BI did not act in a cooperative manner with LPL. Although the addition of LPL to BCEC Transwell cultures significantly increased LDL holoparticle cell association and selective uptake of LDL-associated alphaTocH, holoparticle transcytosis across this porcine blood-brain barrier (BBB) model was unaffected by the presence of LPL. An important observation during transcytosis experiments was a substantial alphaTocH depletion of LDL particles that were resecreted into the basolateral compartment. The relevance of LPL-dependent alphaTocH uptake across the BBB was confirmed in LPL-deficient mice. The absence of LPL resulted in significantly lower cerebral alphaTocH concentrations than observed in control animals.  相似文献   

2.
Because of very low density lipoprotein's (VLDL) potential atherogenicity and the demonstration that VLDL can bind to other cells, we examined the interaction of human VLDL with cultured porcine aortic endothelium. The lipoprotein-cell interaction had many properties similar to those seen with the binding of a ligand to a cell surface receptor. It was time and temperature dependent, saturable, and reversible. Scatchard analysis of competition data suggested that there may be more than one class of binding site. The affinity of the low affinity site was similar to that for low density lipoprotein (LDL). Also, the capacity of endothelial cells to bind VLDL was similar to that for LDL, when related to apo B (i.e., particle) concentration. Not only was unlabelled VLDL able to compete for VLDL binding sites, but so was LDL and high density lipoprotein (HDL). The maximal competition either by LDL or by HDL was less than that by VLDL. The maximal competition by HDL was more than by LDL. The VLDL binding was dependent on Ca2+. It was not changed by the content of lipoprotein in the medium in which cells were grown prior to the binding studies. These observations suggest that VLDL binding to endothelial cells is similar in some respects, but not in all, to the binding of LDL. Comparison of the data with endothelial cells to previous data with adipocytes also indicated differences between the interaction of these two cell types with VLDL. It is possible that this binding process may be involved in the formation of atherogenic remnants of triglyceride-rich lipoproteins on the endothelial surface of large blood vessels.  相似文献   

3.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

4.
Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid. We postulate that similar mechanisms may be important in the regulation of LPL activity at the vascular endothelium.  相似文献   

5.
The hydrolysis of triglycerides in plasma lipoproteins is mediated by lipoprotein lipase (LPL) that is bound to vascular endothelial cells. The specific endothelial cell surface protein(s) with which LPL associates has not been characterized. To identify this LPL binding protein(s), radioiodinated cell surface proteins from cultured bovine aortic endothelial cells were chromatographed using bovine LPL-Sepharose. A single radioiodinated protein of apparent molecular mass 220 kDa was specifically retained by the gel and eluted with 0.4 M NaCl. A LPL-binding protein of similar size was obtained after metabolic labeling of the cellular proteoglycans with 35SO4, indicating that the 220-kDa protein is a proteoglycan. After heparitinase or nitrous acid treatments the molecular mass of the LPL-binding protein decreased to approximately 50 kDa, suggesting that it contains heparin sulfate chains. A 220-kDa protein from the basal cell surface was also identified using LPL-Sepharose chromatography. 125I-LPL was cross-linked to the endothelial cell surface using ethylene glycobis (succinimidylsuccinate). A single ligand-receptor complex, approximately 350 kDa, was obtained. Heparin and unlabeled LPL decreased the cross-linking of radioiodinated LPL to the cell surface receptor. To examine whether the receptor mediates the internalization of cross-linked 125I-LPL, cells containing 125I-LPL complexed to the surface were incubated at either 37 or at 4 degrees C. The amount of 125I-LPL internalized by the cells was 74% greater at 37 degrees C than at 4 degrees C. This suggested that LPL cross-linked to the receptor was internalized in a temperature-dependent manner. Thus, a 220-kDa heparan sulfate proteoglycan functions as an endothelial cell surface receptor for LPL.  相似文献   

6.
Triglycerides in circulating plasma lipoproteins are hydrolyzed by lipoprotein lipase (LPL) which is thought to bind to proteoglycans on the luminal endothelial cell surface. Previous studies from this laboratory using LPL-Sepharose affinity chromatography identified a 220-kDa LPL binding proteoglycan. Using ligand blotting with 125I-LPL, we now report a 116-kDa LPL binding protein in plasma membrane preparations of endothelial cells. 125I-LPL binding to this protein was abolished by addition of unlabeled LPL. When the cell surface of endothelial cells was labeled with biotin, a 116-kDa protein was biotinylated. Furthermore, the biotinylated 116-kDa protein bound to LPL-Sepharose and eluted with 0.4 M NaCl suggesting that the 116-kDa LPL binding protein is present on the cell surface. When detergent extracts of endothelial cells were applied to LPL-Sepharose in the presence of 0.15 M NaCl, the 116-kDa, but not the 220-kDa, protein still bound to LPL-Sepharose. The 116-kDa protein was not labeled with 35SO4 and eluted from DEAE-cellulose prior to proteoglycans, suggesting that it is not a proteoglycan. However, a 116-kDa endothelial cell surface protein was metabolically labeled with [35S]methionine. This protein was dissociated from the cell surface by incubating cells with heparin (50 units/ml)-containing buffer. After heparin treatment of endothelial cells, LPL binding to and internalization by the cells decreased greater than 70% compared to control cells. These results suggest that endothelial cells synthesize a heparin-releasable, high affinity 116-kDa LPL binding protein. We postulate that this protein is associated with proteoglycans on luminal endothelial surfaces and mediates LPL binding, internalization, and recycling. We name this protein hrp (heparin-releasable protein)-116.  相似文献   

7.
The VLDL (very low-density lipoprotein) receptor is a peripheral lipoprotein receptor expressing in fatty acid active tissues abundantly. In the Balb/c fasting mice, VLDL receptor as well as LPL (lipoprotein lipase), FAT (fatty acid translocase)/CD36, H-FABP (heart-type fatty acid-binding protein), ACS (acyl-CoA synthetase) and LCAD (long-chain acyl-CoA dehydrogenase) expressions increased. An electron microscopic examination indicated the lipid droplets that accumulated in the hearts of fasting Balb/c mice. During the development of SD (Sprague-Dawley) rats, VLDL receptor, LPL, FAT/CD36, H-FABP, ACS, and LCAD mRNAs concomitantly increased with growth. However, PK (pyruvate kinase) mRNA expression was negligible. In cultured neonatal rat cardiomyocytes, VLDL receptor expression increased with days in culture. Oil red-O staining showed that cardiomyocytes after 7 days in culture (when the VLDL receptor protein is present) accumulated beta-migrating VLDL. Thereby, we showed that the cardiac VLDL receptor pathway for delivery of remnant lipoprotein particles might be part of a cardiac fatty acid metabolism.  相似文献   

8.
LDL receptors, expressed in cultured fibroblasts from patients homozygous for the FH Afrikaner-1 (FH1) mutation (Asp206 to Glu), are transported from the endoplasmic reticulum (ER) to the Golgi apparatus more slowly than in normal cells. In the present study, binding characteristics of FH1 cells for lipoprotein ligands (LDL and beta VLDL) and for receptor-specific monoclonal antibodies pointed to the existence of two surface forms of the same mutant receptor. One of these forms bound lipoproteins with normal high affinity whereas another did not. Binding studies of transfected hamster cells expressing only the mutant human gene confirmed the single-gene origin of the different forms. The existence of functionally distinct forms of the receptor protein was supported by the observation that only lipoprotein-binding receptor molecules were trapped intracellularly and degraded following ammonium chloride treatment of cells in the presence of ligand. The lipoprotein-binding receptor population was indistinguishable from normal receptors with respect to its affinity for LDL and beta VLDL, uptake and degradation of lipoprotein, and receptor recycling. Ligand blotting versus immunoblotting of receptors revealed normal-sized mutant receptors that were not recognized by lipoprotein ligand. Despite these differences, both mutant forms of the receptor were degraded at rates similar to those of normal receptors. We propose that the single amino acid substitution in this receptor interferes with the folding and/or posttranslational processing of precursor molecules in such a way that receptors adopt alternative stable structures.  相似文献   

9.
It has been suggested that besides the LDL-receptor, hepatocytes possess an apo E or remnant receptor. To evaluate which hepatic lipoprotein receptor is involved in VLDL remnant catabolism, we studied the binding of VLDL remnants to HepG2 cells. Native VLDL was obtained from type IIb hyperlipidemic patients and treated with bovine milk lipoprotein lipase (LPL). This LPL-treated VLDL (LPL-VLDL) was used as representative for VLDL remnants. Our results show that LPL-VLDL binds with high affinity to HepG2 cells. Competition experiments showed that the binding of 125I-labelled LPL-VLDL is inhibited to about 30% of the control value by the simultaneous addition of an excess of either unlabelled LDL or LPL-VLDL. Preincubation of HepG2 cells with LDL resulted in a reduction of the binding of LDL and LPL-VLDL to 34 and 55% of the control value, whereas preincubation of the cells with heavy HDL (density between 1.16 and 1.21 g/ml) stimulated the binding of LDL and LPL-VLDL to about 230% of the control value. Preincubation of the cells with insulin (250 nM/l) also stimulated the binding of both LDL and LPL-VLDL (175 and 143% of the control value, respectively). We conclude that LPL-VLDL binds to the LDL-receptor of HepG2 cells and that no evidence has been obtained for the presence on HepG2 cells of an additional receptor that is involved in the binding of VLDL remnants.  相似文献   

10.
Lipoprotein lipase (LPL) is important for clearance of triacylglycerols (TG) from plasma both as an enzyme and as a bridging factor between lipoproteins and receptors for endocytosis. The amount of LPL at the luminal side of the capillary endothelium determines to what extent lipids are taken up. Mechanisms to control both the activity of LPL and its transport to the endothelial sites are regulated, but poorly understood. Angiopoietin-like proteins (ANGPTLs) 3 and 4 are potential control proteins for LPL, but plasma concentrations of ANGPTLs do not correlate with plasma TG levels. We investigated the effects of recombinant human N-terminal (NT) ANGPTLs3 and 4 on LPL-mediated bridging of TG-rich lipoproteins to primary mouse hepatocytes and found that the NT-ANGPTLs, in concentrations sufficient to cause inactivation of LPL in vitro, were unable to prevent LPL-mediated lipoprotein uptake. We therefore investigated the effects of lipoproteins (chylomicrons, VLDL and LDL) on the inactivation of LPL in vitro by NT-ANGPTLs3 and 4 and found that LPL activity was protected by TG-rich lipoproteins. In vivo, postprandial TG protected LPL from inactivation by recombinant NT-ANGPTL4 injected to mice. We conclude that lipoprotein-bound LPL is stabilized against inactivation by ANGPTLs. The levels of ANGPTLs found in blood may not be sufficient to overcome this stabilization. Therefore it is likely that the prime site of action of ANGPTLs on LPL is in subendothelial compartments where TG-rich lipoprotein concentration is lower than in blood. This could explain why the plasma levels of TG and ANGPTLs do not correlate.  相似文献   

11.
The VLDL (very low density lipoprotein) receptor is a member of the LDL (low density lipoprotein) receptor family. The VLDL receptor binds apolipoprotein (apo) E but not apo B, and is expressed in fatty acid active tissues (heart, muscle, adipose) and macrophages abundantly. Lipoprotein lipase (LPL) modulates the binding of triglyceride (TG)-rich lipoprotein particles to the VLDL receptor. By the unique ligand specificity, VLDL receptor practically appeared to function as IDL (intermediate density lipoprotein) and chylomicron remnant receptor in peripheral tissues in concert with LPL. In contrast to LDL receptor, the VLDL receptor expression is not down regulated by lipoproteins. Recently several possible functions of the VLDL receptor have been reported in lipoprotein metabolism, atherosclerosis, obesity/insulin resistance, cardiac fatty acid metabolism and neuronal migration. The gene therapy of VLDL receptor into the LDL receptor knockout mice liver showed a benefit effect for lipoprotein metabolism and atherosclerosis. Further researches about the VLDL receptor function will be needed in the future.  相似文献   

12.
Dietary sphingomyelin (SM) is hydrolyzed by intestinal alkaline sphingomyelinase and neutral ceramidase to sphingosine, which is absorbed and converted to palmitic acid and acylated into chylomicron triglycerides (TGs). SM digestion is slow and is affected by luminal factors such as bile salt, cholesterol, and other lipids. In the gut, SM and its metabolites may influence TG hydrolysis, cholesterol absorption, lipoprotein formation, and mucosal growth. SM accounts for approximately 20% of the phospholipids in human plasma lipoproteins, of which two-thirds are in LDL and VLDL. It is secreted in chylomicrons and VLDL and transferred into HDL via the ABCA1 transporter. Plasma SM increases after periods of large lipid loads, during suckling, and in type II hypercholesterolemia, cholesterol-fed animals, and apolipoprotein E-deficient mice. SM is thus an important amphiphilic component when plasma lipoprotein pools expand in response to large lipid loads or metabolic abnormalities. It inhibits lipoprotein lipase and LCAT as well as the interaction of lipoproteins with receptors and counteracts LDL oxidation. The turnover of plasma SM is greater than can be accounted for by the turnover of LDL and HDL particles. Some SM must be degraded via receptor-mediated catabolism of chylomicron and VLDL remnants and by scavenger receptor class B type I receptor-mediated transfer into cells.  相似文献   

13.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

14.
《The Journal of cell biology》1993,122(6):1223-1230
Trophoblast-like BeWo cells form well-polarized epithelial monolayers, when cultured on permeable supports. Contrary to other polarized cell systems, in which the transferrin receptor is found predominantly on the basolateral cell surface, BeWo cells express the transferrin receptor at both apical and basolateral cell surfaces (Cerneus, D.P., and A. van der Ende. 1991. J. Cell Biol. 114: 1149-1158). In the present study we have addressed the question whether BeWo cells use a different sorting mechanism to target transferrin receptors to the cell surface, by examining the biosynthetic and transcytotic pathways of the transferrin receptor in BeWo cells. Using trypsin and antibodies to detect transferrin receptors at the cell surface of filter-grown BeWo cells, we show that at least 80% of newly synthesized transferrin receptor follows a direct pathway to the basolateral surface, demonstrating that the transferrin receptor is efficiently intracellularly sorted. After surface arrival, pulse-labeled transferrin receptor equilibrates between apical and basolateral cell surfaces, due to ongoing transcytotic transport in both directions. The subsequent redistribution takes over 120 min and results in a steady state distribution with 1.5-2.0 times more transferrin receptors at the basolateral surface than at the apical surface. By monitoring the fate of surface-bound 125I-transferrin, internalized either from the apical or basolateral surface transcytosis of the transferrin receptor was studied. About 15% of 125I-transferrin is transcytosed in the basolateral to apical direction, whereas 25% is transcytosed in the opposite direction, indicated that the fraction of receptors involved in transcytosis is roughly twofold higher for the apical receptor pool, as compared to the basolateral pool. Upon internalization, both apical and basolateral receptor pools become redistributed on both surfaces, resulting in a twofold higher number of transferrin receptors at the basolateral surface. Our results indicate that in BeWo cells bidirectional transcytosis is the main factor in surface distribution of transferrin receptors on apical and basolateral surfaces, which may represent a cell type-specific, post-endocytic, sorting mechanism.  相似文献   

15.
We found that LPL enhances the binding to HepG2 cells and fibroblasts of both VLDL and apoE free LDL. In the presence of 1.7 micrograms/ml of purified bovine LPL, the binding of LDL and VLDL was up to 60 fold increased as compared to the control binding. In addition, LPL enhances the binding in LDL-receptor negative fibroblasts to the same extent as it does in normal fibroblasts. The presence of 10 mM of EGTA could not prevent the LPL-mediated enhancement of the binding of both LDL and VLDL to fibroblasts, indicating that the binding is calcium independent. Furthermore, up- and down regulation of the LDL receptor did not influence the binding of these lipoproteins in the presence of LPL. Strikingly, we found that the enhancing effect of LPL on the binding of LDL and VLDL to HepG2 cells could be abolished by preincubation of the cells with heparinase, suggesting that heparan sulphate proteoglycans are involved in the LPL-mediated stimulation. We hypothesize that the enhancement of the cellular binding of LDL and VLDL in the presence of LPL is caused by an LPL-bridging between proteoglycans present on the plasma membrane and the lipoproteins, and that the LDL receptor and LRP are not involved.  相似文献   

16.
The uptake and transport of cholesterol-carrying low density lipoprotein (LDL) by the arterial wall is a continuous dynamic process, contributing to the cholesterol homeostasis in the plasma and in the cellular components of the vessel wall. Upon exposure to endothelial cells (EC), LDL interacts in part, with specific surface receptors (LDL-R). In this study we questioned: (i) the distribution of LDL receptors on the apical and basal cell membranes in endothelial cells; (ii) the role of LDL receptors in the control of cholesterol homeostasis and (iii) the translocation of LDL receptor across the EC. To this purpose bovine aortic EC were cultured on filters in a double-chamber system, in Dulbecco's medium supplemented either with 10% fetal calf serum (FCS) or with 10% lipoprotein-deficient serum (LPDS). The cells were exposed for 3h to 13H]acetate (40 microCi) added to both compartments of the cell culture inserts. The newly synthesized [3H]cholesterol was detected by thin layer chromatography and quantified by liquid scintillation counting. The LDL-R were detected in EC protein homogenates by immunoblotting using a monoclonal antibody against LDL-R (IgG-C7); the intracellular pathway of LDL-R was examined by electron microscopy using a complex made of protein A 5 nm or 20 nm colloidal gold particles and an anti-LDL receptor antibody (Au-PA-C7). To evaluate the distribution and the transport of LDL-R from one cell surface to the other, EC grown in LPDS were radioiodinated either on the apical or on the basolateral surface, incubated on the same surface with LDL, and subsequently biotinylated on the opposite non-radiolabeled surface. The EC were further solubilized and the protein extract immunoprecipitated with anti-LDL-R antibody or with mouse IgG (as control). The eluted antigen-antibody complexes were precipitated with streptavidin-agarose beads, solubilized, and subjected to SDS-PAGE. The results showed that: (a) the LDL-R were present on both endothelial cell fronts; (b) using the complex Au-PA-C7, the LDL-R were localized in endothelial plasmalemmal vesicles as well as coated pits and coated vesicles in multivesicular bodies and lysosomes, irrespective of the cell surface exposed to the complex; (c) biochemical assays indicated that upon ligand binding, the LDL-R were translocated preferentially from the apical to the basal plasma membrane.  相似文献   

17.
High-density lipoprotein 3 (HDL3) binds to capillary endothelial cells when their lumen surfaces are exposed to 125I-HDL3 by post-mortem perfusion of whole brain. Kinetic studies of binding of HDL3 to isolated membranes show that HDL3 binds only to endothelial membranes with high affinity (Kd = 7 micrograms/ml). Trypsin treatment of membranes abolishes HDL3 binding. High-affinity binding sites for HDL3 were recovered when endothelial cells from bovine brain capillaries were maintained in culture (Kd = 13 micrograms/ml HDL3 protein). The characteristics of the binding were preserved up to the 6th passage. Competition experiments using isolated luminal membranes or cultured endothelial cells indicate that only HDL3 and not LDL or methylated LDL, are able to compete binding of 125I-HDL3. Furthermore, the inhibition of 125I-HDL3 binding by lipoprotein A-I and lipoprotein A-I:A-II strongly suggests that apolipoprotein A-I is implicated in the formation of HDL3-receptor complexes. The binding is increased by loading cells with free cholesterol or LDL cholesterol. In addition, surface-bound 125I-HDL3 remains sensitive to mild trypsin treatment after subsequent incubation of BBCE at 37 degrees C. HDL3 bound to the cell surface is not endocytosed, but rather rapidly released into the medium after binding (t1/2 = 5 min).  相似文献   

18.
The ability of cultured human arterial smooth muscle cells to regulate low density lipoprotein (LDL) receptor activity was tested. In contrast to human skin fibroblasts incubated with lipoprotein deficient medium under identical conditions, smooth muscle cells showed significantly reduced enhancement of 125I-labeled LDL and 125I-labeled VLDL (very low density lipoprotein) binding. Smooth muscle cells also failed to suppress LDL receptor activity during incubation with either LDL or cholesterol added to the medium, while fibroblasts shoed an active regulatory response. Thus, in comparison with the brisk LDL receptor regulation characteristic of skin fibroblasts, arterial smooth muscle cells have and attenuated capacity to regulate their LDL receptor activity. These results may be relevant to the propensity of these cells to accumulate LDL and cholesterol and form "foam cells" in the arterial wall in vivo, a process associated with atherogenesis.  相似文献   

19.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

20.
Lipoprotein lipase (LPL), synthesized by adipocytes and myocytes, must be transported to the luminal endothelial cell surface where it then interacts with circulating lipoproteins. The first step in this extracellular LPL transport pathway is LPL release from the surface of LPL-synthesizing cells. Because hydrolysis of triglyceride (TG)-rich lipoproteins releases LPL from the apical surface of endothelial cells, we hypothesized that the same substances dissociate LPL from adipocytes. 125I-LPL was bound to the surface of brown adipocytes (BFC-1 beta). LPL binding to the adipocyte surface was greater than to endothelial cell surfaces. Using low concentrations of heparin, more LPL was released from endothelial cells than BFC-1 beta, suggesting that the affinity of LPL binding to the adipocytes was greater than LPL affinity for endothelial cells. Greater than 3-fold more LPL was released from the cell surface when very low density lipoproteins (VLDL) were added to culture medium containing 3% bovine serum albumin. LPL remaining on the cell surface decreased with VLDL addition. Endogenously produced LPL activity was also released from the cells by VLDL. Low and high density lipoproteins did not release 125I-LPL or LPL activity from the adipocytes. To assess whether lipolysis was necessary for LPL release, BFC-1 beta were incubated with TG-rich lipoproteins from a patient with apoCII deficiency. The apoCII-deficient lipoproteins did not release LPL unless an exogenous source of apoCII was added. Apolipoproteins E and Cs and high molar ratios of oleic acid:bovine serum albumin did not release surface-associated LPL. Lysolecithin (25 and 100 microM), but not lecithin, monoglycerides, or diglycerides, released adipocyte surface LPL. Because lysolecithin also released LPL during a 4 degrees C incubation, cellular metabolic functions are not required for LPL dissociation from the cells. Lysolecithin also inhibited LPL binding to endothelial cells; however, this effect was abrogated by addition of bovine serum albumin. We hypothesize that lipolysis products from TG-rich lipoproteins release adipocyte surface LPL, which can then be transported to the luminal endothelial cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号