首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of 6 base-modified 2′-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.  相似文献   

2.
A circular periodic map of short palindromic DNA sequences is constructed using the sequence homology and symmetry. It is applied to compare sequences recognised by class II restriction and modification enzymes with other similar DNA sequences. All known restriction sites have two strong properties: they are enriched by GC pairs, and clustered (purine-purine, pyrimidine-pyrimidine) bonds predominant upon alternating ones. The preference of AT/GC alternation is only slight. These properties were compared quantitatively with the help of suggested numerical methods among different groups of restriction enzymes. The map is applied for prediction of new specificities of restriction modification systems. Possible mechanism of DNA sequence recognition by these enzymes and their evolution are discussed.  相似文献   

3.
Computer programs that can be used for the design of syntheticgenes and that are run on an Apple Macintosh computer are described.These programs determine nucleic acid sequences encoding aminoacid sequences. They select DNA sequences based on codon usageas specified by the user, and determine the placement of basechanges that can be used to create restriction enzyme siteswithout altering the amino acid sequence. A new algorithm forfinding restriction sites by translating the restriction endonucleasetarget sequence in all three reading frames and then searchingthe given peptide or protein amino acid sequence with theseshort restriction enzyme peptide sequences is described. Examplesare given for the creation of synthetic DNA sequences for thebovine prethrombin-2 and ribonuclease A genes Received on October 18, 1988; accepted on December 9, 1988  相似文献   

4.
A computer program has been developed which aids in the determination of restriction enzyme recognition sequences. This is achieved by cleaving DNAs of known sequence with a restriction endonuclease and comparing the fragmentation pattern with a computer-generated set of patterns. The feasibility of this approach has been tested using fragmentation patterns of 0X174 DNA produced by enzymes of both known and unknown specificity. Recognition sequences are predicted for two restriction endonucleases (BbvI and SfaNI) using this method. In addition, recognition sequences are predicted for two other new enzymes (PvuI and MstI) using another computer-assisted method.  相似文献   

5.
I show that the recognition sequences of Type II restriction systems are correlated with the G + C content of the host bacterial DNA. Almost all restriction systems with G + C rich tetranucleotide recognition sequences are found in species with A + T rich genomes, whereas G + C rich hexanucleotide and octanucleotide recognition sequences are found almost exclusively in species with G + C rich genomes. Most hexanucleotide recognition sequences found in species with A + T rich genomes are A + T rich. This distribution eliminates a substantial proportion of the potential variance in the frequency of restriction recognition sequences in the host genomes. As a consequence, almost all restriction recognition sequences, including those eight base pairs in length (Not I and Sfi I), are predicted to occur with a frequency ranging from once every 300 to once every 5,000 base pairs in the host genome. Since the G + C content of bacteriophage DNA and of the host genome are also correlated, the data presented is evidence that most Type II "restriction systems" are indeed involved in phage restriction.  相似文献   

6.
双拷贝基因及其侧翼序列的克隆是分子生物学中的一个难点。将优化的反向PCR(Inverse PCR,iPCR)与TAIL-PCR相结合,有效地克隆双拷贝基因及其侧翼序列。先用Southern blotting方法确定一种能获得合适长度片段的限制性内切酶,然后用优化的iPCR方法对该酶切产物进行自连和扩增,将2个拷贝的侧翼序列区分开。根据iPCR结果,进一步用TAIL-PCR扩增更远侧翼的序列。利用这套方法,获得了棉花可育胞质和不育胞质线粒体双拷贝atpA基因的所有EcoR I限制片段(2.2~5.1 kb)和HindⅢ限制片段(8.5~11.7 kb),克隆到2个拷贝各自的侧翼序列。研究结果说明,优化的iPCR与TAIL-PCR相结合是克隆双拷贝基因及其侧翼序列的一种高效方法。  相似文献   

7.
A molecular method based on PCR-restriction fragment length polymorphism (RFLP) analysis of internal transcribed spacer (ITS) ribosomal DNA sequences was designed to rapidly identify fungal species, with members of the genus Pleurotus as an example. Based on the results of phylogenetic analysis of ITS sequences from Pleurotus, a PCR-RFLP endonuclease autoscreening (PRE Auto) program was developed to screen restriction endonucleases for discriminating multiple sequences from different species. The PRE Auto program analyzes the endonuclease recognition sites and calculates the sizes of the fragments in the sequences that are imported into the program in groups according to species recognition. Every restriction endonuclease is scored through the calculation of the average coefficient for the sequence groups and the average coefficient for the sequences within a group, and then virtual electrophoresis maps for the selected restriction enzymes, based on the results of the scoring system, are displayed for the rapid determination of the candidate endonucleases. A total of 85 haplotypes representing 151 ITS sequences were used for the analysis, and 2,992 restriction endonucleases were screened to find the candidates for the identification of species. This method was verified by an experiment with 28 samples representing 12 species of Pleurotus. The results of the digestion by the restriction enzymes showed the same patterns of DNA fragments anticipated by the PRE Auto program, apart from those for four misidentified samples. ITS sequences from 14 samples (of which nine sequences were obtained in this study), including four originally misidentified samples, confirmed the species identities revealed by the PCR-RFLP analysis. The method developed here can be used for the identification of species of other living microorganisms.  相似文献   

8.
In the last decades, the number of known tardigrade species has considerably increased to more than 960 species with new ones being discovered every year. However, the study of tardigrade species presents a general problem which is frequently encountered during the work with invertebrates: small size and remarkable degrees of phenotypic plasticity may sometimes not permit a definite identification of the species. In this investigation we have used riboprinting, a tool to study rDNA sequence variation, in order to distinguish tardigrade species from each other. The method combines a restriction site variation approach of ribotyping with amplified DNAs. In eight investigated species of heterotardigrades and eutardigrades we have amplified the genes for the small subunit ribosomal RNA (SSU; 18S) and subsequently sequenced the genes. Virtual riboprints were used for identification of restriction sites from ten already published 18S rDNA sequences and seven new 18S rDNA sequences. On the basis of the obtained sequences, diagnostic restriction fragment patterns can be predicted with only 11 restriction enzymes. The virtual digestion confirmed the obtained restriction fragment patterns and restriction sites of all amplified and digested tardigrade DNAs. We show that the variation in positions and number of restriction sites obtained by standard restriction fragment analysis on agarose gels can be used successfully for taxonomic identification at different taxonomic levels. The simple restriction fragment analysis provides a fast and convenient method of molecular barcoding for species identification in tardigrades.  相似文献   

9.
J M Voigt  M D Topal 《Biochemistry》1990,29(6):1632-1637
The interactions of restriction enzymes with their cognate DNA recognition sequences present a model for protein-DNA interactions. We have investigated the effect of O6-methylguanine on restriction enzyme cleavage of DNA; O6-methylguanine is a carcinogenic lesion and a structural analogue of the biological restriction inhibitor N6-methyladenine. O6-Methylguanine was synthesized into oligonucleotides at unique positions. The oligonucleotides were purified and analyzed by high-pressure liquid chromatography to assure that, within the limits of our detection, O6-methylguanine was the only modified base present. These oligonucleotides were annealed with their complement so that cytosine, and in one case thymine, opposed O6-methylguanine. DNA cleavage by restriction enzymes that recognize a unique DNA sequence, HpaII, HhaI, HinPI, NaeI, NarI, PvuII, and XhoI, was inhibited by a single O6-methylguanine in place of guanine (adenine for PvuII) within the appropriate recognition sequences. However, only the modified strand was nicked by HpaII, NaeI, and XhoI with O6-methylguanine at certain positions, indicating asymmetric strand cleavage. For all the restriction enzymes studied but AhaII, BanI, and NarI, lack of double- or single-strand cleavage correlated with inability of the O6-methylguanine-containing recognition sequence to measurably bind enzyme. None of the restriction enzymes studied were inhibited by O6-methylguanine outside their cognate recognition sequences.  相似文献   

10.
A computer program, which runs on MS-DOS personal computers, is described that assists in the design of synthetic genes coding for proteins. The goal of the program is the design of a gene which (i) contains as many unique restriction sites as possible and (ii) uses a specific codon usage. The gene designed according to the criteria above is (i) suitable for 'modular mutagenesis' experiments and (ii) optimized for expression. The program 'reverse-translates' protein sequences into degenerated DNA sequences, generates a map of potential restriction sites and locates sequence positions where unique restriction sites can be accommodated. The nucleic acid sequence is then 'refined' according to a specific codon usage to remove any degeneration. Unique restriction sites, if potentially present, can be 'forced' into the degenerated nucleic acid sequence by using 'priority codes' assigned to different restriction sequences.  相似文献   

11.
The mcrB (rglB) locus of Escherichia coli K-12 mediates sequence-specific restriction of cytosine-modified DNA. Genetic and sequence analysis shows that the locus actually comprises two genes, mcrB and mcrC. We show here that in vivo, McrC modifies the specificity of McrB restriction by expanding the range of modified sequences restricted. That is, the sequences sensitive to McrB(+)-dependent restriction can be divided into two sets: some modified sequences containing 5-methylcytosine are restricted by McrB+ cells even when McrC-, but most such sequences are restricted in vivo only by McrB+ McrC+ cells. The sequences restricted only by McrB+C+ include T-even bacteriophage containing 5-hydroxymethylcytosine (restriction of this phage is the RglB+ phenotype), some sequences containing N4-methylcytosine, and some sequences containing 5-methylcytosine. The sequence codes for two polypeptides of 54 (McrB) and 42 (McrC) kilodaltons, whereas in vitro translation yields four products, of approximately 29 and approximately 49 (McrB) and of approximately 38 and approximately 40 (McrC) kilodaltons. The McrB polypeptide sequence contains a potential GTP-binding motif, so this protein presumably binds the nucleotide cofactor. The deduced McrC polypeptide is somewhat basic and may bind to DNA, consistent with its genetic activity as a modulator of the specificity of McrB. At the nucleotide sequence level, the G+C content of mcrBC is very low for E. coli, suggesting that the genes may have been acquired recently during the evolution of the species.  相似文献   

12.
Cloning of random-sequence oligodeoxynucleotides   总被引:32,自引:0,他引:32  
A R Oliphant  A L Nussbaum  K Struhl 《Gene》1986,44(2-3):177-183
Methods are described for cloning random or highly degenerate nucleotide (nt) sequences. The procedures use synthetically derived mixtures of oligodeoxynucleotides (oligos) whose heterogeneous central portions are bounded at their 5' and 3' ends by sequences recognized by restriction endonucleases. Oligo collections of defined length and nt composition are synthesized by utilizing appropriate concentrations of all four nucleotide precursors during each addition step for the central region. Single-stranded oligos with appropriate 5' and 3' ends can be ligated directly, although inefficiently, into double-stranded (ds) DNA molecules with complementary 5' and 3' extensions produced by restriction endonuclease cleavage. A more general and efficient method is to convert the oligo into a ds form by incubating it with the Klenow (large) fragment of Escherichia coli DNA polymerase I. If the 3' ends are palindromic, two oligo molecules will serve as mutual primers for polymerization. The resulting products are ds molecules containing two oligo units separated by the original 3' restriction site and bounded at each end by the original 5' restriction site. After appropriate restriction endonuclease cleavage, oligo units can be cloned by standard procedures. Analysis of 26 recombinant M13 phages indicates that the nt sequences of the cloned oligos are in good accord with what was expected on a random basis.  相似文献   

13.
A web-based resource, Microbial Community Analysis (MiCA), has been developed to facilitate studies on microbial community ecology that use analyses of terminal-restriction fragment length polymorphisms (T-RFLP) of 16S and 18S rRNA genes. MiCA provides an intuitive web interface to access two specialized programs and a specially formatted database of 16S ribosomal RNA sequences. The first program performs virtual polymerase chain reaction (PCR) amplification of rRNA genes and restriction of the amplicons using primer sequences and restriction enzymes chosen by the user. This program, in silico PCR and Restriction (ISPaR), uses a binary encoding of DNA sequences to rapidly scan large numbers of sequences in databases searching for primer annealing and restriction sites while permitting the user to specify the number of mismatches in primer sequences. ISPaR supports multiple digests with up to three enzymes. The number of base pairs between the 5′ and 3′ primers and the proximal restriction sites can be reported, printed, or exported in various formats. The second program, APLAUS, infers a plausible community structure(s) based on T-RFLP data supplied by a user. APLAUS estimates the relative abundances of populations and reports a listing of phylotypes that are consistent with the empirical data. MiCA is accessible at .  相似文献   

14.
We have developed a convenient method for family shuffling of amino acid sequences, termed digestion-after-shuffling. After DNA shuffling of homologous genes, plasmid mixture is extracted from a library and used for several double digestions with restriction enzymes. For each double digestion, two restriction enzymes are selected, corresponding to the single restriction sites of different parental genes. After digestions, fragments with expected sizes are obtained by gel purification and religated to construct recombinant plasmids. Thus, the obtained genes should be chimeras and have at least two restriction sites originating from different parental sequences.  相似文献   

15.
Housekeeping genes encoding metabolic enzymes may provide alternative markers to 16S ribosomal DNA (rDNA) for genotypic and phylogenetic characterization of bacterial species. We have developed a PCR-restriction fragment length polymorphism (PCR-RFLP) assay, targeting the triosephosphate isomerase (tpi) gene, which allows the differentiation of twelve pathogenic Clostridium species. Degenerate primers constructed from alignments of tpi sequences of various gram-positive bacteria allowed the amplification of a 501 bp target region in the twelve Clostridium type strains. A phylogenetic tree constructed from the nucleotidic sequences of these tpi amplicons was well correlated with that inferred from analysis of 16S rDNA gene sequences. The analysis of tpi sequences revealed restriction sites of enzyme AluI that could be species-specific. Indeed, AluI digestion of amplicons from the twelve type strains provided distinct restriction patterns. A total of 127 strains (three to sixteen strains for each species) was further analyzed by PCR-RFLP of the tpi gene, and confirmed that each species could be characterized by one to three restriction types (RTs). The differences between RTs within species could be explained by point mutations in AluI restriction sites of the tpi sequences. PCR-restriction analysis of the tpi gene offers an accurate tool for species identification within the genus Clostridium, and provides an alternative marker to 16S rDNA for phylogenetic analyses.  相似文献   

16.
Two-dimensional displays of the restriction fragments from the DNA of Mus musculus revealed a complex species-specific pattern produced from nonsatellite repetitive sequences. The patterns have been used as a guide in the direct purification of a group of broadly interspersed repeated DNA sequences (characterized by a 1350-bp Eco-Bam fragment) that have been studied by molecular cloning, restriction mapping and genomic Southern blotting. These studies show that the cloned representatives originate from an abundant group of sequences that share homology with about 2% of the mouse genome. The sequences do not appear to share homology with mouse-interspersed-family-1 (MIF-1) nor with the major AT-rich satellite sequences of mouse. They appear to be part of a group of larger repetitive elements that is both broadly interspersed and heavily methylated in normal mouse tissue.  相似文献   

17.
Organization of ribosomal genes in Paramecium tetraurelia   总被引:1,自引:0,他引:1       下载免费PDF全文
The macronuclear ribosomal DNA (rDNA) of the ciliated protozoan Paramecium tetraurelia (stock 51) was analyzed by digestion with restriction endonucleases. The fragments which contained ribosomal RNA (rRNA) coding sequences and spacer sequences were identified. The spacer sequences exhibited some heterogeneity in size. The genes coding for 5.8S RNA, but not for 5S RNA, are linked to the 17S and 25S rRNA genes. Complementary RNA, synthesized from rDNA of stock 51, was hybridized with restriction digests of whole cell DNA from six other allopatric stocks of this species. The restriction patterns of the rDNA from these seven stocks were, in general, very similar, and the sizes of the coding sequences were identical in all seven stocks. Only the restriction pattern of rDNA from stock 127 differed significantly from that of stock 51. The rDNA from stock 127 was isolated and characterized, and with the exception of the restriction pattern of its spacer, it resembled the rDNA from stock 51. It is concluded that the rDNA repeat in Paramecium, including the spacer, has, in general, been conserved during the course of evolution. It is suggested that in some species, even in the absence of genetic exchange among geographically separated populations, selection pressure may act to conserve spacers of tandemly repeated rDNA. The conservation may be related to the number of rDNA copies in the germinal nucleus.  相似文献   

18.
The structure of the endogenous murine leukemia virus (MuLV) sequences of NIH/Swiss mice was analyzed by restriction endonuclease digestion, gel electrophoresis, and hybridization to an MuLV nucleic acid probe. Digestion of mouse DNA with certain restriction endonucleases revealed two classes of fragments. A large number of fragments (about 30) were present at a relatively low concentration, indicating that each derived from a sequence present once in the mouse genome. A smaller number of fragments (one to five) were present at a much higher concentration and must have resulted from sequences present multiple times in the mouse genome. These results indicated that the endogenous MuLV sequences represent a family of dispersed repetitive sequences. Hybridization of these same digested mouse DNAs to nucleic acid probes representing different portions of the MuLV genome allowed construction of a map of the sites where restriction endonucleases cleave the endogenous MuLV sequences. Several independent recombinant DNA clones of endogenous MuLV sequences have been isolated from C3H mice (Roblin et al., J. Virol. 43:113-126, 1982). Analysis of these sequences shows that they have the structure of MuLV proviruses. The sites at which restriction endonucleases cleave within these proviruses appeared to be similar or identical to the sites at which these nucleases cleaved within the MuLV sequences of NIH/Swiss mice. This identity was confirmed by parallel electrophoresis. We conclude that the apparently complex pattern of endogenous MuLV sequences of NIH/Swiss mice consists largely of only two kinds of provirus, each repeated multiple times at dispersed sites in the mouse genome.  相似文献   

19.
We describe a simple and versatile method to fuse two DNA sequences on separate cloning vectors in a single polymerase chain reaction (PCR). The method, termed restriction enzyme-assisted megaprimer PCR (REM–PCR), requires that the two cloning vectors share a common sequence and that the DNA sequences to be fused are cloned in the same orientation with respect to the common sequence. Fusion of the two sequences is achieved by mutual priming at the common sequence between two DNA fragments that were generated by restriction enzyme and linearly amplified by repetitive priming in the PCR reaction mixture.  相似文献   

20.
The ability of DNA sequences to adopt unusual structures under the superhelical torsional stress has been studied. Sequences that are forced to adopt unusual conformation in topologically constrained pBR322 form V DNA (Lk = 0) were mapped using restriction enzymes as probes. Restriction enzymes such as BamHI, PstI, AvaI and HindIII could not cleave their recognition sequences. The removal of topological constraint relieved this inhibition. The influence of neighbouring sequences on the ability of a given sequence to adopt unusual DNA structure, presumably left handed Z conformation, was studied through single hit analysis. Using multiple cut restriction enzymes such as NarI and FspI, it could be shown that under identical topological strain, the extent of structural alteration is greatly influenced by the neighbouring sequences. In the light of the variety of sequences and locations that could be mapped to adopt non-B conformation in pBR322 form V DNA, restriction enzymes appear as potential structural probes for natural DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号