首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.  相似文献   

2.
From natural samples 11 isolates able to remove trichloroethene (CCl2CHl) from an aqueousenvironment were obtained which were capable of cometabolic degradation of CCl2CHCl by an enzyme system for phenol degradation. At an initial CCl2CHCl concentration of 1 mg/L, the resting cells of particular cultures degraded 33–94% CCl2CHCl during 1 d and their transformation capacity ranged from 0.3 to 3.1 mg CCl2CHCl per g organic fraction. An analysis of a mixed phenol-fed culture with an excellent trichloroethene-degrading ability found a markedly minority isolate represented in the consortium to be responsible for this property. This culture degraded CCl2CHCl even at a low inoculum concentration and attained a transformation capacity of 14.7 mg CCl2CHCl per g. The increase in chloride concentration after degradation was quantitative when compared with the decrease in organically bound chlorine. The degree of CCl2CHCl degradation was affected by Me2S2; this substance can significantly reduce the degrading ability of some tested cultures (>60%); however, it does not cause this inhibition with others.  相似文献   

3.
4.
A synthetic beta-thio-fructofuranoside of mercaptoethanol inhibited not only beta-fructofuranosidases but also alpha-glucosidases. The compound was hardly hydrolyzed by the glycosidases. The thio-fructoside competitively inhibited beta-fructofuranosidases from Aspergillus niger, Candida sp., and Saccharomyces cerevisiae, but not Arthrobacter beta-fructofuranosidase at all. Sucrase activity of rat intestinal sucrase/isomaltase complex was also suppressed in the presence of the thio-fructoside. The thio-fructoside showed noncompetitive inhibition toward maltase activity of the rat intestinal enzyme complex and Saccharomyces sp. alpha-glucosidase. Inhibition against the Bacillus stearothermophilus alpha-glucosidase, Rhizopus glucoamylase, and porcine kidney trehalase were more slight than that against these two alpha-glucosidases.  相似文献   

5.
Summary By enrichment technique, nine anaerobic mixed bacterial cultures were isolated, five of which showed stable cellulolysis. All cultures fermented cellulose and produced different fermentative products. Mixed culture BOC 25 yielded major levels of acetate and ethanol (39.6 and 12.0 mmol/l, respectively) and minor levels of propionate (2.5 mmol/l) and digested filter paper cellulose to the extent of 32.5% w/v. BOC 25 digested cellulosic and lignocellulosic substrates and produced filter paper cellulase, carboxymethyl cellulase, Avicelase and -glucosidase. Strain DC 25, a cellulolyticClostridium was purified from one of the mixed cultures. The fermentation products of DC 25 from cellulose, cellobiose or glucose were ethanol, acetate, formate, H2 and CO2.  相似文献   

6.
Three pure bacterial cultures degrading methyl t-butyl ether (MTBE) were isolated from activated sludge and fruit of the Gingko tree. They have been classified as belonging to the genuses Methylobacterium, Rhodococcus, and Arthrobacter. These cultures degraded 60 ppm MTBE in 1–2 weeks of incubation at 23–25 °C. The growth of the isolates on MTBE as sole carbon source is very slow compared with growth on nutrient-rich medium. Uniformly-labeled [14C]MTBE was used to determine 14CO2 evolution. Within 7 days of incubation, about 8% of the initial radioactivity was evolved as 14CO2. These strains also grow on t-butanol, butyl formate, isopropanol, acetone and pyruvate as carbon sources. The presence of these compounds in combination with MTBE decreased the degradation of MTBE. The cultures pregrown on pyruvate resulted in a reduction in 14CO2 evolution from [14C]MTBE. The availability of pure cultures will allow the determination of the pathway intermediates and the rate-limiting steps in the degradation of MTBE. Received: 8 December 1995 / Received last revision: 5 August 1996 / Accepted: 12 August 1996  相似文献   

7.
AIMS: To investigate the possibility of reducing excess sludge production in activated sludge processes by the addition of chemical uncouplers to greatly dissociate anabolism from catabolism. METHODS AND RESULTS: Ortho-chlorophenol (oCP), 2,4-dichlorophenol (DCP), 3,3',4',5-tetrachlorosalicylanilide (TCS), para-dinitrophenol (pNP) and 2,4-dinitrophenol (DNP) were chosen for short-term tests for their ability to reduce sludge yield by shaking bottle test. The most effective chemicals, DNP and pNP, together with TCS were tested for various uncoupler concentrations and biomass concentrations. TCS was tested in a lab-scale completely mixed activated sludge batch culture. The model (demonstrated by Liu) was verified with experimental data in completely mixed activated sludge batch test, but was inconsistent with the results from the shaking bottle batch test. The observed growth yield (Yobs) decreased with increasing of the ratio of initial uncoupler concentration to initial biomass concentration (Cu/X0). CONCLUSIONS: We suggest that the uncouplers oCP, DCP, TCS, pNP and DNP can cause a significant decrease in sludge production, the metabolism of which can explain the decline in sludge yield. SIGNIFICANCE AND IMPACT OF THE STUDY: The real strength of chemical uncoupler imposing on biomass should be Cu/X0, not initial uncoupler concentration (Cu) alone. Chemical uncouplers can be used to develop the activated sludge processes for minimizing excess sludge production.  相似文献   

8.
9.
Summary Bacterial mixed cultures able to degrade the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluorene and fluoranthene, were obtained from soil using conventional enrichment techniques. From these mixed cultures three pure strains were isolated:Pseudomonas paucimobilis degrading phenanthrene;P. vesicularis degrading fluorene andAlcaligenes denitrificans degrading fluoranthene. The maximum rates of PAH degradation ranged from 1.0 mg phenanthrene/ml per day to 0.3 mg fluoranthene/ml per day at doubling times of 12 h to 35 h for growth on PAH as sole carbon source. The protein yield during PAH degradation was about 0.25 mg/mg C for all strains. Maximum PAH oxidation rates and optimum specific bacterial growth were obtained near pH 7.0 and 30°C. After growth entered the stationary phase, no dead end-products of PAH degradation could be detected in the culture fluid.  相似文献   

10.
Three bacterial strains utilizing paracetamol as the sole carbon, nitrogen, and energy source were isolated from a paracetamol-degrading aerobic aggregate, and assigned to species of the genera Stenotrophomonas and Pseudomonas. The Stenotrophomonas species have not included any known paracetamol degraders until now. In batch cultures, the organisms f1, f2, and fg-2 could perform complete degradation of paracetamol at concentrations of 400, 2,500, and 2,000 mg/L or below, respectively. A combination of three microbial strains resulted in significantly improved degradation and mineralization of paracetamol. The co-culture was able to use paracetamol up to concentrations of 4,000 mg/L, and mineralized 87.1 % of the added paracetamol at the initial of 2,000 mg/L. Two key metabolites of the biodegradation pathway of paracetamol, 4-aminophenol, and hydroquinone were detected. Paracetamol was degraded predominantly via 4-aminophenol to hydroquinone with subsequent ring fission, suggesting new pathways for paracetamol-degrading bacteria. The degradation of paracetamol could thus be performed by the single isolates, but is stimulated by a synergistic interaction of the three-member consortium, suggesting a possible complementary interaction among the various isolates. The exact roles of each of the strains in the consortium need to be further elucidated.  相似文献   

11.
Inhibition of methanogenesis by several heavy metals using pure cultures   总被引:1,自引:0,他引:1  
The effect of different concentrations of nickel, copper and zinc on methanogenesis using pure cultures of Methanobacterium formicicum, Methanobrevibacter arboriphilicus, Methanosarcina thermophila and Methanospirillum hungatei over time (1, 15 and 30 d) was evaluated. methanobacterium formicicum showed the highest resistance to all the metals tested, while Methanospirillum hungatei was the most sensitive strain. All strains were sensitive to copper and zinc (10–250 mg 1-1, but were much more resistant to nickel (200–1200 mg 1-1). An adaptation process of the methanogenic pure culture with the toxicants was observed over time, which indicates that the inhibitory effects of heavy metals may be reverted in optimal anaerobic conditions.  相似文献   

12.
Summary Several bacterial strains able to grow on ammonium sulphite spent liquor (ASSL) were isolated by an enrichment culture technique and identified. The capacities of these bacteria to degrade ASSL in pure culture was compared with the modification of the methoxyl groups of the lignosulphonates. A rapid demethylation followed by remethylation, observed in some species, showed a complex biodegradation mechanism.Attempts to correlate the ability to degrade the substrate studied with that of the micro-organism selected to grow upon aromatic carbon sources were made. The isolate might have numerous activities regarding ASSL.  相似文献   

13.
Assessment of denitrifying bacterial composition in activated sludge   总被引:2,自引:0,他引:2  
The abundance and structure of denitrifying bacterial community in different activated sludge samples were assessed, where the abundance of denitrifying functional genes showed nirS in the range of 10(4)-10(5), nosZ with 10(4)-10(6) and 16S rRNA gene in the range 10(9)-10(10) copy number per ml of sludge. The culturable approach revealed Pseudomonas sp. and Alcaligenes sp. to be numerically high, whereas culture independent method showed betaproteobacteria to dominate the sludge samples. Comamonas sp. and Pseudomonas fluorescens isolates showed efficient denitrification, while Pseudomonas mendocina, Pseudomonas stutzeri and Brevundimonas diminuta accumulated nitrite during denitrification. Numerically dominant RFLP OTUs of the nosZ gene from the fertilizer factory sludge samples clustered with the known isolates of betaproteobacteria. The data also suggests the presence of different truncated denitrifiers with high numbers in sludge habitat.  相似文献   

14.
The inhibition of methane production by Methanosaeta concilii GP6, Methanospirillum hungatei GP1, Methanobacterium espanolae GP9, and Methanobacterium bryantii M.o.H. during short-term (6-h) exposure to eight benzene ring compounds was studied. The concentration that caused 50% inhibition of the methane production rate (IC50) was dependent on the species and the toxicant. Pentachlorophenol was the most toxic of the tested compounds, with an IC50 of less than 8 mg/liter for all species except M. hungatei. Abietic acid was the next most toxic compound for all the species, with an IC50 in the range of 21.4 to 203 mg/liter. Sodium benzoate was generally the least toxic, with an IC50 in the range of 1,225 to 32,400 mg/liter. 3-Chlorobenzoate was substantially more toxic (IC50, 450 to 1,460 mg/liter) than benzoate. The inhibition by benzene, phenol, vanillic acid, and toluene was intermediate to that of pentachlorophenol and benzoate. Long-term incubation (days) studies to determine effect on growth indicated that all eight compounds were usually much more toxic than predicted from the short-term data. In these latter studies, there was generally a good correlation in the observed inhibition as determined from growth and methane production.  相似文献   

15.
The inhibition of methane production by Methanosaeta concilii GP6, Methanospirillum hungatei GP1, Methanobacterium espanolae GP9, and Methanobacterium bryantii M.o.H. during short-term (6-h) exposure to eight benzene ring compounds was studied. The concentration that caused 50% inhibition of the methane production rate (IC50) was dependent on the species and the toxicant. Pentachlorophenol was the most toxic of the tested compounds, with an IC50 of less than 8 mg/liter for all species except M. hungatei. Abietic acid was the next most toxic compound for all the species, with an IC50 in the range of 21.4 to 203 mg/liter. Sodium benzoate was generally the least toxic, with an IC50 in the range of 1,225 to 32,400 mg/liter. 3-Chlorobenzoate was substantially more toxic (IC50, 450 to 1,460 mg/liter) than benzoate. The inhibition by benzene, phenol, vanillic acid, and toluene was intermediate to that of pentachlorophenol and benzoate. Long-term incubation (days) studies to determine effect on growth indicated that all eight compounds were usually much more toxic than predicted from the short-term data. In these latter studies, there was generally a good correlation in the observed inhibition as determined from growth and methane production.  相似文献   

16.
AIMS: This study was to develop a simple and reliable method for quantifying Microthrix parvicella 16S rRNA gene copies and its application to activated sludge samples collected from wastewater treatment plants (WWTP) with and without foaming problems. METHODS AND RESULTS: The relative frequency of M. parvicella was determined by combining real-time PCR assays for quantification of total bacterial 16S rRNA gene copies and M. parvicella 16S rRNA gene copies. The developed method was applied to analyse 32 activated sludge samples obtained from German WWTP. The level of M. parvicella 16S rRNA gene copies in the 18 nonfoaming samples was below 3% of the total number of 16S rRNA gene copies and in the range of 0-18% for the 14 foaming samples. CONCLUSIONS: The described method allows reliable monitoring of the amount of M. parvicella in activated sludge samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The described method may become an important component of a warning system for forthcoming bulking and foaming episodes.  相似文献   

17.
活性污泥微生物菌群研究方法进展   总被引:20,自引:0,他引:20  
活性污泥是活性污泥法处理污水系统的功能主体。人类对活性污泥微生物菌群的认识随着其研究方法的发展而逐步深入。传统培养方法只能检测到活性污泥中1%~15%的微生物。随着一系列基于免培养的分子生物学技术的出现,活性污泥中菌群的复杂性和多样性以惊人的速度被人们认识,大量依靠传统检测方法未能发现却在活性污泥中起关键作用的微生物逐渐被发现。许多模拟活性污泥菌群生存环境条件的现代培养技术开始发展,且已成功培养了一部分传统培养方法不能培养的细菌类群,这为研究基于免培养方法发现的大量新的微生物菌群的生理特性和作用机制提供了可能,也无疑将把人们对活性污泥菌群的认识推向一个新的层次.主要介绍活性污泥微生物菌群研究的一系列方法,从传统培养方法到基于免培养的现代分子生物学技术,再到现代培养技术,着重论述了现代分子生物学技术及其在活性污泥微生物菌群研究中的进展。  相似文献   

18.
The effect of ammonium chloride, sodium butyrate, sodium propionate, and the heavy metals nickel, zinc, and copper on methanogenesis by pure cultures of Methanospirillum hungatei, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, and Methanobacterium formicicum at pH 6.5 was studied. The latter three strains were resistant to greater than 60 g/L of the volatile fatty acids and to greater than 10 g/L of NH3 N. Methanospirillum hungatei was somewhat more sensitive with 50% inhibition of methanogenesis occurring at 4.2 g/L NH3 N, 27 g/L butyrate, and 41 g/L propionate. All strains were very sensitive to both copper (1-5 mg/L) and zinc (1-10 mg/L), but much more resistant to nickel. Zinc and copper concentrations 30 to 270 times higher were required to cause inhibition of Msp. hungatei incubated in sewage sludge compared with buffer, indicating a strong protective environment was afforded the methanogens against heavy metal toxicity in the sludge.  相似文献   

19.
Fermentation of waste activated sludge produces volatile fatty acids (VFAs), which can be used as the carbon sources for numerous biological processes. However, product inhibition can limit extent of fermentation to VFAs. In this study, product inhibition during fermentation of waste activated sludge pre-treated by a thermal hydrolysis process (THP-WAS) was investigated. Product inhibition was confirmed as spiking reactors with high levels of a mix of VFAs prevented fermentation taking place. Various inhibition models were trialled and it was found that a threshold model (based on thermodynamics) provided the best fit between model and data. This is the first time that threshold type inhibition has been shown for a mixed substrate, mixed population system. Batch fermentations carried out with THP-WAS of different dilutions were used to evaluate the impact of different organic loadings. The threshold VFA concentration for the systems studied was determined to be 17±1gCOD(VFA)L(-1). Inhibition was shown to be due to the presence of a combination of VFAs containing 2-6 carbon atoms each. When evaluated individually, by spiking individual VFAs, all VFAs except for acetate had the same impact at this threshold; acetate being approximately 50% as inhibitory as the other organic acids (COD basis). Based on this, a weighted model could be proposed to better represent the data. Strategies to improve overall yield could be increased production of acetate, or dilution to below the inhibitory level.  相似文献   

20.
Summary Experiments were performed to test whether or not high concentrations of CaCl2 (100 mM) are able to arrest and stabilize internal structures and associated functions in Euglena gracilis Z cells stored in darkness at 4° C. Storage of photoheterotrophically grown green cells in high Ca2+ media (2–100 mM) retards pheophytinization of the chlorophylls, preserves photosynthetic activities and stabilizes the structural organization of the associated light-harvesting complexes of the photosystem II units. Alterations of photosynthesis and respiration by chlorpromazine or by temperature are strongly reduced in cells stored under such conditions. More precisely, a chlorpromazine inhibition site is evidenced in the mitochondrial electron pathway and its location in the chloroplastic electron pathway is clarified. Adaptation of Euglena cells from 2 mM to 100 mM Ca2+ medium is accompanied by an increase both in the externally bound and total internal calcium concentration. A mechanism involving a Ca2+ deposit on internal membranes is proposed. Such interpretation is extended to the storage of cells immobilized in Ca2+-alginate gel.Nomenclature (Ca2+)ex external calcium concentration - Chl chlorophylls - (Cl)ex external chloride concentration - CPZ chlorpromazine or 2-chloro-10-(3-dimethylaminopropyl)-phenothiazine - DCMU diuron or (3,4-dichorophenyl)-1,1-dimethylurea - EGTA ethylene glycol-bis(-aminoethylether) N,N,N ,N-tetraacetic acid - Fc initial level of chlorophyll fluorescence with DCMU - Fmax maximal level of chlorophyll fluorescence with DCMU - Fo level of chlorophyll fluorescence after transients - Ft level of chlorophyll fluorescence with DCMU - Pheo pheophytins - PS I and PS II photosystems I and II - SMi storage medium Offprint requests to: C. Tamponnet  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号