首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven cadmium complexes: [CdX2(Hapro)(H2O)n] (X: Cl(1), Br(2)), [CdX2(Hgaba)] (X: Cl(3), Br(4)), [Cd(Hahex)2(H2O)2][CdCl4] (5), and [CdX2(Haze-3)](H2O)n (X: Cl(6), Br(7)) have been prepared and investigated by means of IR and FT Raman spectra. The crystal and molecular structures of 2, 3, 5 and 7 were determined by a single-crystal X-ray diffraction method. In complex 2, the cadmium atom is in a distorted octahedral geometry, ligated by two carboxyl oxygen atoms of Hapro, a water molecule, and three bromine atoms; one is terminal and each of the other two is bridging two cadmium atoms to make a polymer. The structure of 3 consists of one-dimensional polymers bridged by two chlorine atoms and a carboxyl group. The carboxyl oxygen atoms of Hgaba coordinate forkedly to two cadmium atoms. The cadmium atom of [Cd(Hahex)2(H2O)2]2+ in complex 5 is in a distorted octahedral geometry, ligated by four carboxyl oxygen atoms of two molecules of Hahex and by two water molecules. [Cd(Hahex)2(H2O)2]2+ exists between two layers which are formed of infinite [CdCl4]2- chains. The carboxyl oxygen atoms of Hahex coordinate to the same cadmium atom. In complex 7, the cadmium atom is ligated by two carboxyl oxygen atoms and four bridging bromine atoms to make a polymer.  相似文献   

2.
The interactions of Zn(II), Cd(II) and Hg(II) with hippuric acid (hipH) were studied and several novel compounds were synthesized and studied by NMR. Some new metal-hippuric-cytosine ternary compounds were formed and the structure of the [Cd(hip)(2)(cyt)(H(2)O)](2) ternary complex resolved. Each cadmium (II) atom has a distorted trigonal bipyramid coordination which is linked to a water molecule, a cytosine via N(3), a carboxylic oxygen atom of a hippurate moiety and two bridging dicoordinated hippurates bound through the carboxylic oxygen atoms. To these five main bonds, two longer ancillary interactions can be observed: the second oxygen of the monocoordinated hippurate group and the carboxylic oxygen of the cytosine ligand. The compound is stabilized by an intramolecular stacking between the benzene and cytosine rings and by the hydrogen bonds between the coordinated water molecules and the ligands. This is, to our knowledge, the first structure of a cadmium-amino acid derivative-natural nucleobase compound described so far.  相似文献   

3.
Phospholipase A(2) coordinates Ca(2+) ion through three carbonyl oxygen atoms of residues 28, 30, and 32, two carboxyl oxygen atoms of residue Asp49, and two (or one) water molecules, forming seven (or six) coordinate geometry of Ca(2+) ligands. Two crystal structures of cadmium-binding acidic phospholipase A(2) from the venom of Agkistrodon halys Pallas (i.e., Agkistrodon blomhoffii brevicaudus) at different pH values (5.9 and 7.4) were determined to 1.9A resolution by the isomorphous difference Fourier method. The well-refined structures revealed that a Cd(2+) ion occupied the position expected for a Ca(2+) ion, and that the substitution of Cd(2+) for Ca(2+) resulted in detectable changes in the metal-binding region: one of the carboxyl oxygen atoms from residue Asp49 was farther from the metal ion while the other one was closer and there were no water molecules coordinating to the metal ion. Thus the Cd(2+)-binding region appears to have four coordinating oxygen ligands. The cadmium binding to the enzyme induced no other significant conformational change in the enzyme molecule elsewhere. The mechanism for divalent cadmium cation to support substrate binding but not catalysis is discussed.  相似文献   

4.
The origin of the lactam oxygen atoms of phycocyanobilin from Cyanidium caldarium was studied using 18O labelling. By inhibiting photosynthesis, a high 18O enrichment was maintained in the gas phase and the resulting incorporation of label showed that the lactam oxygen atoms were derived from two oxygen molecules. Slow exchange of these oxygen atoms with water was demonstrated directly by using H218O.  相似文献   

5.
A fusion protein made from maltose binding protein (pmal) and human metallothionein (MT) was expressed using E. coli. The purified recombinant protein (pmal-MT) was immobilized on Chitopearl resin, and characteristics of pmal-MT for metal binding were evaluated. As expected from the tertiary structure of metallothionein, the pmal-MT ligand adsorbed 12.1 cadmium molecules per one molecule of the ligand at pH 5.2. The pmal-MT ligand also bound 26.6 gallium molecules per one molecule of the ligand at pH 6.5. Neither cadmium ion nor gallium ion bound to a control protein bovine serum albumin (BSA). Adsorption isotherms for both ions were correlated by Langmuir-type equations. Two types of binding sites have been elucidated on the basis of HSAB (hard and soft acid and base) theory. It was suggested that gallium ion specifically binds to amino acid residues containing oxygen and nitrogen atoms, while cadmium ion binds to specific binding sites formed by multiple cysteine residues. The pmal-MT ligand bound these metals in the concentration range of 0.2-1.0 mM, and the bound metal ions could be eluted under relatively mild conditions (pH 2.0). The pmal-MT Chitopearl resin was stable and could be used repeatedly without loss of binding activity. Thus, this new ligand would be useful for recovery of toxic heavy metals and/or valuable metal ions from various aqueous solutions.  相似文献   

6.
An X-ray crystal-structure determination has shown that the compound [Cd(5'-CMP)(H2O)],H2O has a polymeric structure in which each cadmium atom is bonded to five atoms: to the N(3) position on the base, to a phosphate oxygen from each of three other 5'-CMP groups and to a water molecule.  相似文献   

7.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

8.
A molecular dynamics simulation has been carried out for the mixture of an ice nucleus, supercooled water and a molecule of alanine dipeptide (AD). The dipeptide molecule has been allocated near the nucleus surface which corresponds to the prism plane of ice crystal. The molecule is found to approach the ice surface so that the two hydrophilic sites on one side of the molecule (Oc2 and Hn1) are closest to the surface. The hydrogen bond between Hn1 site and the oxygen atom on the prism plane of the ice nucleus is expected. The perturbations of two hydrophilic sites (Oc1 and Hn2), which are surrounded by hydrophobic sites and are pointing away from the surface, attenuate the approach of water molecules to these sites. Thus, these water molecules diffuse. The hydrogen bond between the oxygen atoms on the prism plane and the hydrogen atoms of water molecules is attenuated by the diffusion.  相似文献   

9.
In order to obtain a better structural framework for understanding the catalytic mechanism of carbonic anhydrase, a number of inhibitor complexes of the enzyme were investigated crystallographically. The three-dimensional structure of free human carbonic anhydrase II was refined at pH 7.8 (1.54 A resolution) and at pH 6.0 (1.67 A resolution). The structure around the zinc ion was identical at both pH values. The structure of the zinc-free enzyme was virtually identical with that of the native enzyme, apart from a water molecule that had moved 0.9 A to fill the space that would be occupied by the zinc ion. The complexes with the anionic inhibitors bisulfite and formate were also studied at neutral pH. Bisulfite binds with one of its oxygen atoms, presumably protonized, to the zinc ion and replaces the zinc water. Formate, lacking a hydroxyl group, is bound with its oxygen atoms not far away from the position of the non-protonized oxygen atoms of the bisulfite complex, i.e. at hydrogen bond distance from Thr199 N and at a position between the zinc ion and the hydrophobic part of the active site. The result of these and other studies have implications for our view of the catalytic function of the enzyme, since virtually all inhibitors share some features with substrate, product or expected transition states. A reaction scheme where electrophilic activation of carbon dioxide plays an important role in the hydration reaction is presented. In the reverse direction, the protonized oxygen of the bicarbonate is forced upon the zinc ion, thereby facilitating cleavage of the carbon-oxygen bond. This is achieved by the combined action of the anionic binding site, which binds carboxyl groups, the side-chain of threonine 199, which discriminates between hydrogen bond donors and acceptors, and hydrophobic interaction between substrate and the active site cavity. The required proton transfer between the zinc water and His64 can take place through water molecules 292 and 318.  相似文献   

10.
Yang L  Wang Z  Zhao Y  Tian W  Xu Y  Weng S  Wu J 《Carbohydrate research》2000,329(4):847-853
The title compound, PrCl3.C6H12O6.9 H2O crystallized in the monoclinic space group P2(1)/n with cell dimensions a = 15.8293(3), b = 8.67750(10), c = 16.2292(3) A, beta = 107.0788(8) degrees, V = 2130.92(6) A3 and Z = 4. Each Pr ion is coordinated to nine oxygen atoms, two from the inositol and seven from water molecules, with Pr-O distances from 2.4729 to 2.6899 A; the other two water molecules are hydrogen-bonded. No direct contacts exist between Pr and Cl. There is an extensive network of hydrogen bonds formed by hydroxyl groups, water molecules, and chloride ions. The IR spectra of Pr-, Nd-, and Sm-inositol complexes are similar, which shows that the three metal ions have the same coordination mode. The IR results are consistent with the crystal structure.  相似文献   

11.
A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.  相似文献   

12.
Raman and IR studies are carried out on carnosine (beta-alanyl-L-histidine, Carnos) and its complexes with cobalt(II) at different metal/ligand ratios and basic pH. Binuclear complexes that bind molecular oxygen are formed and information regarding the O-O bridge is obtained from the Raman spectra. When the Co(II)/Carnos ratio is 相似文献   

13.
The solvent molecules found around crystallized oligonucleotides after X-ray refinement are analysed in terms of interaction sites to bases, phosphates and sugars in the three main forms of nucleic acid structures, the A-form, the B-form and the Z-form. The average numbers of contacts to nucleic acid atoms made by solvent molecules are identical in the three forms, but it appears that the average number of contacts solvent molecules make with each other depends on the resolution of the structure. The phosphate anionic oxygen atoms are the most hydrated, while the O(3′) and O(5′) backbone atoms and the ring oxygen atom O(4′) are the least hydrated. Among the hydrophilic atoms of the bases, there is a modulation of the relative water affinities with the nucleic acid form. Numerous hydration sites are such that water molecules can bridge hydrophilic atoms of the same residue, of adjacent residues on the same strand, of distant residues on the two strands, or belonging to symmetry-related residues. Through the helical periodicity of the nucleic acid structure, those bridges can lead to regular and striking hydration networks involving several water molecules and characteristic of the nucleic acid form. Solvent dynamics, as seen by temperature factor versus occupancy plots, seems intimately related to nucleic acid structure and dynamics, since they depend on hydration sites around the nucleic acids.  相似文献   

14.
Six cadmium(II) halide complexes with dl-piperidine-2-carboxylic acid (DL-Hpipe-2), dl-piperidine-3-carboxylic acid (DL-Hpipe-3), and piperidine-4-carboxylic acid (Hpipe-4), have been prepared and characterized by means of IR and Raman spectra and thermal analysis. The crystal structures of [CdCl2(DL-Hpipe-2)(H2O)], [CdBr2(DL-Hpipe-3)], and [CdCl2(Hpipe-4)] have been determined by X-ray diffraction. These three complexes have one-dimensional polymer structures bridged by halide atoms. The crystal of [CdCl2(DL-Hpipe-2)(H2O)] is orthorhombic with the space group Pca2(1). The cadmium atom is in an octahedral geometry, ligated by a carboxyl oxygen atom, two bridging chlorine atoms, a terminal chlorine atom, a water molecule and a carboxyl oxygen atom of a neighboring molecule. The carboxyl oxygen atoms of DL-Hpipe-2 are coordinated to two cadmium atoms. The unit cell consists of two types of one-dimensional polymer structures: [CdCl2(D-Hpipe-2)(H2O)] and [CdCl2(L-Hpipe-2)(H2O)]. Therefore, it is better to write [CdCl2(DL-Hpipe-2)(H2O)] as [CdCl2(D-Hpipe-2)(H2O)][CdCl2(L-Hpipe-2)(H2O)]. The crystal structure of [CdBr2(DL-Hpipe-3)] is monoclinic with space group P2(1). The cadmium atom is in a distorted octahedral geometry ligated by two carboxyl oxygen atoms and four bridging bromine atoms. This complex consists of either D-Hpipe-3 or L-Hpipe-3. Therefore [CdBr2(DL-Hpipe-3)] is written as [CdBr2(D or L-Hpipe-3)]. The crystal of [CdCl2(Hpipe-4)] is monoclinic with space group P2(1)/n. The structure is similar to that of [CdBr2(D or L-Hpipe-3)].  相似文献   

15.
The dynamics, hydration, and ion-binding features of two duplexes, the A(r(CG)(12)) and the B(d(CG)(12)), in a neutralizing aqueous environment with 0.25 M added KCl have been investigated by molecular dynamics (MD) simulations. The regular repeats of the same C=G base-pair motif have been exploited as a statistical alternative to long MD simulations in order to extend the sampling of the conformational space. The trajectories demonstrate the larger flexibility of DNA compared to RNA helices. This flexibility results in less well defined hydration patterns around the DNA than around the RNA backbone atoms. Yet, 22 hydration sites are clearly characterized around both nucleic acid structures. With additional results from MD simulations, the following hydration scale for C=G pairs can be deduced: A-DNA相似文献   

16.
The crystal and molecular structure of the ammonium salt of deoxycytidylyl-(3'-5')-deoxyguanosine has been determined from 0.85 A resolution single crystal X-ray diffraction data. The crystals obtained by acetone diffusion technique at -20 degrees C, are orthorhombic, P212121, a = 12.880(2), b = 17444(2) and c = 27.642(2) A. The structure was solved by high resolution Patterson and Fourier methods and refined to R = 0.136. There are two d(CpG) molecules in the asymmetric unit forming a mini left handed Z-DNA helix. This is in contrast to the earlier reported forms of d(CpG) where the molecules form self base paired duplexes. There are two ammonium ions in the asymmetric unit. The major groove NH+4 ion interacts with N7 of guanines through water bridges besides making H-bonded interactions directly with the phosphate oxygen atoms. A second NH+4 ion is found in the minor groove interacting directly with the phosphate oxygen atoms. Symmetry related molecules pack in such a way that the cytosine base stacks on cytosine and guanine base on guanine. Our structure demonstrates that alternating d(CpG) sequences have the ability to adopt the left handed Z-DNA structure even at the dimer level i.e., in a sequence which is only two base pairs long.  相似文献   

17.
Hydration of transfer RNA molecules: a crystallographic study   总被引:3,自引:0,他引:3  
E Westhof  P Dumas  D Moras 《Biochimie》1988,70(2):145-165
Four crystal structures of transfer RNA molecules were refined at 3 A resolution with the inclusion of the solvent molecules found in the difference maps: yeast tRNA-phe in the orthorhombic form, yeast tRNA-phe in the monoclinic form and yeast tRNA-asp in the A and B forms. Over 100 solvent molecules were located in each tRNA crystal. Several hydration schemes are found repeatedly in the 4 crystals. The tertiary interactions in the corner of the L-shaped molecule attract numerous solvent molecules which bridge the ribose hydroxyl O(2') atoms, base exocyclic atoms and phosphate anionic oxygen atoms. Conservation of bases leads to conservative localized hydration patterns. Several solvent molecules are found stabilizing unusual base pairs like the G-U pairs and those involving the pseudouridine base. Water bridges between the O(2') and the exocyclic atom O2 of pyrimidines or the N3 atom of purines are common. Water bridges occur frequently between successive anionic oxygen atoms of each strand as well as between N7 or other exocyclic atoms of successive bases in the major groove. Magnesium ions or spermine molecules are found to bind in the major groove of tRNA helices without specific interactions.  相似文献   

18.
Even in high-quality X-ray crystal structures of oligonucleotides determined at a resolution of 1 Å or higher, the orientations of first-shell water molecules remain unclear. We used cryo neutron crystallography to gain insight into the H-bonding patterns of water molecules around the left-handed Z-DNA duplex [d(CGCGCG)]2. The neutron density visualized at 1.5 Å resolution for the first time allows us to pinpoint the orientations of most of the water molecules directly contacting the DNA and of many second-shell waters. In particular, H-bond acceptor and donor patterns for water participating in prominent hydration motifs inside the minor groove, on the convex surface or bridging nucleobase and phosphate oxygen atoms are finally revealed. Several water molecules display entirely unexpected orientations. For example, a water molecule located at H-bonding distance from O6 keto oxygen atoms of two adjacent guanines directs both its deuterium atoms away from the keto groups. Exocyclic amino groups of guanine (N2) and cytosine (N4) unexpectedly stabilize waters H-bonded to O2 keto oxygens from adjacent cytosines and O6 keto oxygens from adjacent guanines, respectively. Our structure offers the most detailed view to date of DNA solvation in the solid-state undistorted by metal ions or polyamines.  相似文献   

19.
20.
The crystal structure of oncomodulin, a 12,000 Mr protein isolated from rat tumours, has been determined by molecular replacement using the carp parvalbumin structure as a starting model. Refinement was performed by cycles of molecular fitting and restrained least-squares, using area-detector intensity data to 1.85 A resolution. For the 5770 reflections in the range 6.0 to 1.85 A, which were used in the refinement, the crystallographic R-factor is 0.166. The refined model includes residues 2 to 108, three Ca2+ and 87 water molecules per oncomodulin molecule. The oncomodulin backbone is closely related to that of parvalbumin; however, some differences are found after a least-squares fit of the two backbones, with root-mean-square (r.m.s.) deviations of 1 to 2 A in residues 2 to 6, 59 to 61 of the CD loop, 87, 90 and 108. The overall r.m.s. deviation of the backbone residues 5 to 108 is 0.62 A. Each of the two Ca2+ atoms that are bound to the CD and EF loops is co-ordinated to seven oxygen atoms, including one water molecule. The third Ca2+ is also seven-co-ordinated, to five oxygen atoms belonging to three different oncomodulin molecules and to two water molecules which form hydrogen bonds to a fourth oncomodulin; thus, this intermolecular Ca2+ and its equivalents interlink the molecules into zigzag layers normal to the b axis with a spacing of b/2 or 32.14 A. No such extensive molecular aggregation has been reported for any of the related Ca-binding regulatory proteins of the troponin-C family studied thus far. The Ca-O distances in all three polyhedra are in the range 2.07 A to 2.64 A, indicating tightly bound Ca polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号