首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freeze tolerance and ice content of Hyla versicolor showed pronounced variation between summer (June) and winter (December). Summer frogs survived freezing at -3 degrees C for up to 9 hr and ice accumulation up to 50% of their total body water. A time course of ice formation indicated that an equilibrium level was reached in approximately 15 hr. Thus, the lethal ice content was less than the equilibrium ice content for these conditions (63.1%). A second group was induced to enter an overwintering condition by holding them through the summer and then subjecting them to a progressive reduction in temperature and photoperiod for 2 months. These frogs survived freezing for 48 hr at -3 degrees C. Their equilibrium ice content at this temperature was significantly lower (52.5%) than comparably treated summer animals. In the winter acclimatized group, frozen frogs had substantially higher blood glucose levels than unfrozen frogs (22.7 mumol/ml vs. 1.33 mumol/ml), but glycerol levels were not elevated after freezing. Freezing frogs conditioned for overwintering at -7 degrees C resulted in a higher equilibrium ice content (62.6%), but none survived. It is evident that in preparation for overwintering, frogs reduce the amount of ice formed at a given subzero temperature, but there is little indication of a substantial change in the total amount of ice tolerated.  相似文献   

2.
Hatchling painted turtles (Chrysemys picta) were placed individually into artificial nests constructed in jars of damp soil and then were cooled slowly to temperatures between-7.7 and-12.7 °C. Distinct exotherms were recorded in all jars when water in the soil began to freeze at temperatures between-0.9 and-2.4 °C. A second (animal) exotherm was subsequently detected in some of the jars when water in hatchlings also began to freeze. An animal exotherm occurred in the temperature records for all 23 hatchlings that died in tests terminating at temperatures between-7.7 and-10.8 °C, but no such exotherm was apparent in the temperature records for the 23 turtles that survived these treatments. Moreover, the 4 hatchlings that produced exotherms in tests terminating between-11.5 and-12.7 °C failed to survive, but 5 of 7 hatchlings that produced no exotherm in these tests also died. Thus, turtles that die at subzero temperatures above-11 °C apparently succumb to freezing when ice propagates across their integument from the frozen soil, but animals that die at temperatures below-11 °C generally perish from some other cause. These findings indicate that hatchling painted turtles overwintering inside their shallow, subterranean nests survive exposure to subzero temperatures by avoiding freezing instead of by tolerating freezing.  相似文献   

3.
Eggs of the stonefly, Arcynopteryx compacta, that overwinter in the alpine region of Norwegian mountains, increase their cold-hardiness by dehydration. Eggs enclosed in ice at −22°C survive the loss of about two-thirds of their total water content by shrinkage due to passive diffusion of body water along the concentration gradient. Fully hydrated eggs are killed by freezing at their supercooling point of −26°C, and by direct cooling to −30°C. Dehydrated eggs have a mean supercooling point of −31°C, and survive exposure at −27 and −29°C in ice. Judged from their melting points the eggs do not accumulate low-molecular-weight cryoprotective substances. The difference between freezing and melting points corresponds to a thermal hysteresis of up to 1.8°C. The presence of thermal hysteresis antifreezes may stabilize their supercooled state when enclosed by ice during overwintering. The eggs enter diapause in the autumn, and diapause completion is enhanced both by temperature and time during enclosure in ice.  相似文献   

4.
The water potentials of frozen leaves of Afroalpine plants were measured psychrometrically in the field. Comparison of these potentials with the osmotic potentials of an expressed cellular sap and the water potentials of ice indicated almost ideal freezing behaviour and suggested equilibrium freezing. On the basis of the osmotic potentials of expressed cellular sap, the fractions of frozen cellular water which correspond to the measured water potentials of the frozen leaves could be determined (e.g. 74% at -3.0° C). The freezing points of leaves were found to be in the range between 0° C and -0.5° C, rendering evidence for freezing of almost pure water and thus confirming the conclusions drawn from the water-potential measurements. The leaves proved to be frost resistant down to temperatures between -5° C and -15° C, as depending on the species. They tolerated short supercooling periods which were necessary in order to start ice nucleation. Extracellular ice caps and ice crystals in the intercellular space were observed when cross sections of frozen leaves were investigated microscopically at subfreezing temperatures.Symbols T temperature - water potential Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

5.
J.K. Sherman  K.C. Liu 《Cryobiology》1982,19(5):503-510
Tails of mouse epididymides were treated as follows: control, unfrozen with and without cryoprotective agents (CPA); frozen (to below ?80 °C), slowly (8 °C/min), and rapidly (18 °C/sec), with and without CPA. Intracellular and/or extracellular location of CPA, at least glycerol, was influenced, respectively, by high (22 °C) or low (0 °C) exposure temperature. Standard procedures in electron microscopy were employed and the frozen state preserved by freeze-substitution. Motility before freezing and after thawing was the criterion of cryosurvival.Results showed no evidence of deleterious ultrastructural effects of freezing at rates compared, or of benefits of CPA, regardless of their cellular location. Differences were noted, however, in the appearance of spermatozoa in the frozen state, as a function of the rate of freezing but not as a function of the presence, absence, or location of either glycerol of DMSO. Rapidly frozen cells showed intracellular ice formation in the acrosome, neck, midpiece, and tail regions; there was no intranuclear ice, and extracellular ice artifacts were small. Slowly frozen cells showed large extracellular ice artifacts with evidence of shrinkage distortion due to the dehydration induced by extracellular ice. No spermatozoa survived any of the freezing treatments, showing the lethal effect of both extracellular ice during slow freezing and of intracellular and/or extracellular ice during rapid freezing.  相似文献   

6.
Truman Sherk  Greg Rau 《Hydrobiologia》1996,318(1-3):85-101
Chironomidae were collected in floating emergence traps on 27.5 m deep Findley Lake in the coniferous forest of the Cascade Mountains, USA, from 1972 to 1975. There was considerable yearly variation in the date of thaw, the total number of Chironomidae that emerged and the relative abundance of each species. In 1972, 1973 and 1975 when there were early thaws, Tanytarsus and Procladius were the most common Chironomidae. Many of the common species started to emerge before the lake had completely thawed. In 1973 when most of the lake thawed June 7 and the surface water reached a maximum temperature of 19.25 °C in July, the Tanytarsus chinyensis group, Stictochironomus and Chironomus started to emerge from deep water when there was still ice along shore. Procladius nr gretis and Orthocladius started to emerge two days after the last ice had melted. In 1974 when most of the lake did not thaw until July 30–31, the surface water reached a maximum temperature of only 12.5 °C in August. Only a fifth as many Chironomidae emerged as in 1973. Most of these were Procladius and Orthocladius which had their maximum emergence when most of the lake was still frozen. The emergence of each species was reduced except Orthocladius. Procladius contributed the greatest biomass that emerged each year, but the second greatest biomass was contributed by different genera each year.  相似文献   

7.
Hatchling painted turtles (Chrysemys picta) survived freezing at -2 degrees C for 4 d, few recovered from freezing lasting 6 d, and none survived being frozen for 8 d. Whole-body glucose and lactate were low in animals that had not been subjected to cold and ice but increased precipitously in animals that were frozen for 2 d. Both metabolites continued to increase, but at a somewhat lower rate, in animals frozen for 4, 6, or 8 d. The increase in whole-body lactate reflects a reliance by frozen hatchlings on anaerobiosis, whereas the increase in glucose presumably results from mobilization of glycogen reserves to support anaerobic metabolism. Mortality of frozen hatchlings is correlated with the increase in whole-body lactate. Factors that may contribute to the observed correlation include a compromised capacity for individual organs to cope with the lactic acidosis that accompanies anaerobic metabolism and organ-specific depletion of energy reserves. Individual organs must rely on buffering and glucose reserves available in situ because blood of frozen hatchlings does not circulate. Thus, buffer from the shell cannot be transported to other organs, lactate cannot be sequestered in the shell, and glucose mobilized from liver glycogen is not available to supplement glucose reserves of other tissues. This integrated suite of physiological disruptions may limit tolerance of freezing to conditions with little or no ecological relevance.  相似文献   

8.
Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high.  相似文献   

9.
Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high.  相似文献   

10.
11.
T. I. Olsson 《Oecologia》1988,74(4):492-495
Summary In a boreal river about 95% of the individuals of Gyraulus acronicus overwinter in the littoral zone which freezes solid each year. These snails were compared with those overwintering in the unfrozen sublittoral area: The littoral snails had a higher survival rate, a higher tissue dry mass/CaCO3 ratio, and they deposited a higher number of eggs. Littoral snails had a more pronounced tissue degrowth during winter. High winter survival in the frozen littoral zone, a refuge totaly free from predation, indicates that overwintering here is advantageous. However, during frozen periods of short duration (<1 month) the high initial mortality to which the snails were exposed when freezing into the ice was not compensated for by higher survival after the initial phase. Under such conditions when the frozen period is very short the snails would have higher survival in unfrozen parts and are thus expected to avoid the ice.  相似文献   

12.
Temperature dependences of leaf water potentials (ψleaf) of frozen leaves of frosthardy ivy and winter barley were determined psychrometrically and found to coincide with the respective water potentials of ice which were obtained using the same technique. The water potentials of ice showed good agreement with theoretically established data. Analysis of the components of ψ of frozen leaves of Hedera helix revealed ideal equilibrium freezing, i.e. the governing of the relative content of liquid (or frozen) water solely by the osmotic potential. In winter barley, by contrast, a negative pressure potential was demonstrated to contribute to ψleaf. even under conditions of moderate frost. This reduced the degree of protoplast dehydration and the extent to which the concentrations of the cellular solutes rose. Such a freezing behavior is termed non-ideal equilibrium freezing. Depending on the original content of leaf water, the volume increments of liquid water due to the negative pressure potential amounted up to 10% at ?6 °C and even more at a lower temperature. In addition to the experimental data, a theoretical treatment of psychrometry at subzero temperatures is presented.  相似文献   

13.
We investigated the respiratory metabolism of the overwintering lizard Lacerta vivipara while in either supercooled or frozen states. With a variable pressure and volume microrespirometer and a chromatograph, we show that the oxygen consumption of the supercooled animals showed a nonlinear relationship with temperature and an aerobic metabolism demand between 0.5 and -1.5 degrees C. A significant increase in the respiratory quotient (RQ) values indicated an increasing contribution by the anaerobic pathways with decreasing temperature. In the frozen state, two phases are easily detectable and are probably linked to the ice formation within the body. During the first 5-6 h, the animals showed an oxygen consumption of 3.52 +/- 0.28 microl. g(-1). h(-1) and a RQ value of 0.52 +/- 0.09. In contrast, after ice equilibrium, oxygen consumption decreased sharply (0.55 +/- 0.09 microl. g(-1). h(-1)) and the RQ values increased (2.49 +/- 0.65). The present study confirms the fact that supercooled invertebrates and vertebrates respond differently to subzero temperatures, in terms of aerobic metabolism, and it shows that aerobic metabolism persists under freezing conditions.  相似文献   

14.
Raman spectroscopy was used to study the anomalous decrease in the freezing temperature of water produced by an antifreeze glycoprotein obtained from the sera of an Antarctic fish. An active fraction of this glycoprotein has a molecular weight of approximately 18,000 by equilibrium sedimentation compared to an apparent weight of 20 by freezing temperature depression. The Raman spectra of water present in a 1% antifreeze glycoprotein solution and of ice frozen from this solution were indistinguishable from the spectra of pure water and ice, respectively. These results indicate that the bulk properties of water and ice are unaffected by the presence of the antifreeze glycoprotein. Raman measurements on ice grown slowly, using as seed an oriented single crystal of ice in contact with 1% glycoprotein solutions, showed that the active glycoprotein was not excluded from the ice phase. On the other hand, we found that a smaller, inactive glycoprotein was excluded. Comparison of the Raman spectra of active and inactive glycoprotein components as solids, in 5% solutions, and rapidly frozen 5% solutions, showed that the two components differ in conformation and possibly in the environment of their carbohydrate hydroxyls. These observations suggest that hydrogen bonding of the carbohydrate hydroxyls of the active glycoprotein at the ice-solution interface may physically prevent growth of the ice lattice.  相似文献   

15.
Abstract.The alpine tree weta Hemidiena maori Pictet et Saussure (Orthoptera: Stenopelmatidae) is a large, flightless insect found above the treeline on many of the mountain ranges of the South Island of New Zealand. The population found on the Rock and Pillar Range, Central Otago has been identified as freezing tolerant with a haemolymph ice nucleating agent. The ability of H. maori to survive freezing is compared to the lowland weta Hemideina thoracica Walker and H. crassidens Blanchard, both of which are able to survive the formation of some ice in their bodies. Mortality is associated with time spent frozen in H. thoracica , and it is hypothesized that this species is killed when a critical proportion of its body water is frozen. All five subalpine and alpine populations of H. maori surveyed were found to be freezing tolerant.
Comparison of temperatures of first nucleation and mean supercooling point of haemolymph droplets suggest that haemolymph ice nucleating activity varies between populations of H. maori. Hemideina maori collected from the Mt Cook region appear to lack a haemolymph ice nucleator. This population is nevertheless freezing tolerant, suggesting that the haemolymph ice nucleating agent described in H. maori is not essential for freezing tolerance. Hemideina crassidens and H. ricta Hutton, both of which are found in lowland habitats, also had high mean supercooling point and temperatures of first nucleation of haemolymph droplets, suggesting that these species also have a haemolymph ice nucleator.
Comparison of ice nucleation characteristics of haemolymph and faecal material (representing gut contents) suggests that gut nucleators in H. maori may be at least as efficient as the haemolymph nucleator. It is concluded that freezing tolerance is probably not an adaptation to the alpine environment. This highlights the need for inter- and intraspecific comparative studies if physiological data are to be used to draw evolutionary conclusions.  相似文献   

16.
Cold tolerance and dehydration in Enchytraeidae from Svalbard   总被引:4,自引:1,他引:3  
When cooled in contact with moisture, eight species of arctic Enchytraeidae from Svalbard were killed by freezing within minutes or hours at −3 and −5 °C; an exception was Enchytraeus kincaidi which survived for up to 2 days. When the temperature approached 0 °C the enchytraeids apparently tried to escape from the moist soil. The supercooling capacity of the enchytraeids was relatively low, with mean supercooling points of −5 to −8 °C. In contrast, specimens of several species were extracted from soil cores that had been frozen in their intact state at −15 °C for up to 71 days. Compared to freezing in a moist environment, higher survival rates were obtained during cooling at freezing temperatures in dry soil. Survival was recorded in species kept at −3 °C for up to 35 days, and in some species kept at −6 °C for up to 17 days. Slow warming greatly increased survival rates at −6 °C . The results strongly suggest that arctic enchytraeids avoid freezing by dehydration at subzero temperatures. In agreement with this, weight losses of up to ca. 42% of fresh weight were recorded in Mesenchytraeus spp. and of up to 55% in Enchytraeus kincaidi at water vapour pressures above ice at −3 to −6 °C. All specimens survived dehydration under these conditions. Accepted: 12 December 1997  相似文献   

17.
D J Murphy 《Cryobiology》1979,16(3):292-300
The differences in the lethal freezing temperatures of the foot muscles of the marine snails used in this study were related to the vertical distributions of the snails on the shore. The muscles of the subtidal species Thais lapillus and Nassarius obsoletus were injured at temperatures that were significantly higher than those of the muscles of the intertidal species Littorina obtusata, Littorina littorea, and Littorina saxatilis. The lethal freezing temperatures also varied among the intertidal species. The foot muscle of the high-intertidal species, L. saxatilis, was injured at a significantly lower temperature than the foot muscles of the low-intertidal species L. obtusata.Calorimetry was used to show that the differences in the lethal freezing temperatures between the subtidal and intertidal snails were related to the amounts of tissue ice formed. The ability of the muscles of the intertidal snails to tolerate lower subfreezing temperatures was associated with an increased tolerance to greater quantities of tissue ice. In contrast, the differences in the lethal freezing temperatures among the intertidal species were independent of the amounts of tissue ice formed. The percentage of water frozen in the muscles of these snails at their respective lethal freezing temperatures were not significantly different and were equal to 82%. Thus, the physiological mechanism responsible for the differences in the lethal freezing temperatures of the muscles of the intertidal snails is associated with an increased tolerance to a factor other than the amounts of tissue ice formed.  相似文献   

18.
Taking advantage of their optical transparency, we clearly observed the third stage infective juveniles (IJs) of Steinernema feltiae freezing under a cryo-stage microscope. The IJs froze when the water surrounding them froze at −2°C and below. However, they avoid inoculative freezing at −1°C, suggesting cryoprotective dehydration. Freezing was evident as a sudden darkening and cessation of IJs'' movement. Freeze substitution and transmission electron microscopy confirmed that the IJs of S. feltiae freeze intracellularly. Ice crystals were found in every compartment of the body. IJs frozen at high sub-zero temperatures (−1 and −3°C) survived and had small ice crystals. Those frozen at −10°C had large ice crystals and did not survive. However, the pattern of ice formation was not well-controlled and individual nematodes frozen at −3°C had both small and large ice crystals. IJs frozen by plunging directly into liquid nitrogen had small ice crystals, but did not survive. This study thus presents the evidence that S. feltiae is only the second freeze tolerant animal, after the Antarctic nematode Panagrolaimus davidi, shown to withstand extensive intracellular freezing.  相似文献   

19.
Hygrophilic soil animals, like enchytraeids, overwintering in frozen soil are unlikely to base their cold tolerance on supercooling of body fluids. It seems more likely that they will either freeze due to inoculative freezing, or dehydrate and adjust their body fluid melting point to ambient temperature as has been shown for earthworm cocoons and Collembola. In the present study we tested this hypothesis by exposing field-collected adult Fridericia ratzeli from Disko, West Greenland, to freezing temperatures under various moisture regimes. When cooled at –1 °C min–1 under dry conditions F. ratzeli had a mean temperature of crystallisation (Tc) of –5.8 °C. However, when exposed to temperatures above standard Tc for 22 h, at –4 °C, most individuals (90%, n= 30) remained unfrozen. Slow cooling from –1 °C to –6 °C in vials where the air was in equilibrium with the vapour pressure of ice resulted in freezing in about 65% of the individuals. These individuals maintained a normal body water content of 2.7–3.0 mg mg–1 dry weight and had body fluid melting points of about –0.5 °C with little or no change due to freezing. About 35% of the individuals dehydrated drastically to below 1.1 mg mg–1 dry weight at –6 °C, and consequently had lowered their body fluid melting point to ca. –6 °C at this time. Survival was high in both frozen and dehydrated animals at –6 °C, about 60%. Approximately 25% of the animals (both frozen and dehydrated individuals) had elevated glucose concentrations, but the mean glucose concentration was not increased to any great extent in any group due to cold exposure. The desiccating potential of ice was simulated using aqueous NaCl solutions at 0 °C. Water loss and survival in this experiment were in good agreement with results from freezing experiments. The influence of soil moisture on survival and tendency to dehydrate was also evaluated. However, soil moisture ranging between 0.74 g g–1 and 1.15 g g–1 dry soil did not result in any significant differences in survival or frequency of dehydrated animals even though the apparent wetness and structure of the soil was clearly different in these moisture contents.Abbreviations DW dry weight - FW fresh weight - MP melting point - RH relative humidity - Tc crystallisation temperatures - WC water contentCommunicated by I.D. Hume  相似文献   

20.
Summary We conducted experiments to assess the importance of winter cold and photoperiod as factors affecting the spatial and age distributions of overwintering larvae of the treehole mosquito Anopheles barberi. Larval dormancy in A. barberi was induced by photoperiods with 14.75 h of light or less per 24 h cycle. About 75% of the larvae entering dormancy were in the second instar regardless of photoperiod. Dormant second instar larvae survived freezing at-15° C for 24 h better than dormant third instar larvae. Larvae were more likely to survive freezing at-15° C in water from treeholes in which they were commonly found in nature than in water from treeholes in which they were unlikely to occur. Female oviposition was significantly higher into water from treeholes in which larvae were likely to be found than in either water from treeholes in which larvae were not commonly found or distilled water. These findings suggest that, in the northern part of its range, the distribution of A. barberi and the age structure of overwintering cohorts are influenced by extreme winter cold. The mechanisms responsible for the distribution of larvae and the overwintering age structure are, respectively, female oviposition behavior and larval photoperiodism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号