首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new fluorescent probes were synthesized for improving the method of studying donor-donor energy migration (DDEM). Each probe has two identical fluorescent 7-diethylaminocoumarin-3-carbonyl groups attached to a rigid bisteroid dodecacyclic spacer through additional inserts. In two probes, the inserts are beta-Ala and L-Ser residues, which provide for a different nearest environment of the fluorophores. The third probe has identical beta-Ala inserts. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

2.
3.
Tracking of cell migration plays an important role in the study of morphogenesis, inflammation, and metastasis. The recent development of probes that exist as intracellular peptide-fluorescence dye adducts has offered the possibility of aldehyde fixation of these dyes for detailed anatomic studies of lymphocyte trafficking. To define the conditions for fixation of these cytoplasmic fluorescent probes, we compared fixation conditions containing formaldehyde, glutaraldehyde, paraformaldehyde, zinc formaldehyde, and glyoxylate, as well as fixation by quick-freezing in liquid nitrogen-cooled methylbutane. The efficacy of aldehyde fixation of the cell fluorescence was assessed by quantitative tissue cytometry and flow cytometry. We studied cytoplasmic fluorescent dyes with discrete emissions in the green [5-chloromethylfluorescein diacetate (CMFDA); 492 ex, 516 em] and orange [5-(and-6)-(4-chloromethyl(benzoyl)amino) tetramethylrhodamine (CMTMR); 540 ex, 566 em] spectra. The results demonstrated that aldehyde fixation preserved cell fluorescence for more than 6 months. The primary difference between the aldehyde fixatives was variability in the difference between the yield of the cell fluorescence and the relevant background fluorescence. Formaldehyde and paraformaldehyde were superior to the other fixatives in preserving cell fluorescence while limiting background fluorescence. With these fixatives, both the CMFDA and CMTMR fluorescent dyes permitted sufficient anatomic resolution for reliable localization in long-term cell tracking studies.  相似文献   

4.
Fluorescence-linked binding assays allow determination of dissociation constants at equilibrium and have recently become increasingly popular, thanks to their ease of operation. Currently used probes, such as 1-aminoanthracene and N-phenyl-1-naphthylamine, are excited and emit in the ultraviolet region, but alternative ligands operating in the visible spectrum would be highly desirable for applications in biosensing devices. Based on the two above structures, we have designed and synthesised six new fluorescent probes to be used in ligand-binding assays. The compounds are derivatives of naphatalene, anthracene and fluoranthene and present two aromatic moieties linked by an amine nitrogen. We have measured the emission spectra of the new probes and their binding to three odorant-binding proteins. The probes bind the tested proteins with different affinities, generally with dissociation constants about one order of magnitude lower than the parent compounds. The extended aromatic systems present in the new compounds produced a shift of both excitation and emission peaks at higher wavelength, close or within the visible spectrum, thus facilitating measurements in biosensors for odorants and small organic molecules using optical devices.  相似文献   

5.
New fluorescent cholesterol analogs, (22E, 20R)-3beta-hydroxy-23-(9-anthryl)-24-norchola-5,22-die ne (R-AV-Ch), and the 20S-isomer (S-AV-Ch) were synthesized, their spectral and membrane properties were characterized. The probes bear a 9-anthrylvinyl (AV) group instead of C22-C27 segment of the cholesterol alkyl chain. Computer simulations show that both of the probes have bulkier tail regions than cholesterol and predict some perturbation in the packing of membranes, particularly for R-AV-Ch. In monolayer experiments, the force-area behavior of the probes was compared with that of cholesterol, pure and in mixtures with palmitoyloleoyl phosphatidylcholine (POPC) and N-stearoyl sphingomyelin (SSM). The results show that pure R-AV-Ch occupies 35-40% more cross-sectional area than cholesterol at surface pressures below film collapse (0-22 mN/m); whereas S-AV-Ch occupies nearly the same molecular area as cholesterol. Isotherms of POPC or SSM mixed with 0.1 mol fraction of either probe are similar to isotherms of the corresponding mixtures of POPC or SSM with cholesterol. The probes show typical AV absorption (lambda 386, 368, 350 and 256 nm) and fluorescence (lambda 412-435 nm) spectra. Steady-state anisotropies of R-AV-Ch and S-AV-Ch in isotropic medium or liquid-crystalline bilayers are higher than the values obtained for other AV probes reflecting hindered intramolecular mobility of the fluorophore and decreased overall rotational rate of the rigid cholesterol derivatives. This suggestion is confirmed by time-resolved fluorescence experiments which show also, in accordance with monolayer data, that S-AV-Ch is better accommodated in POPC-cholesterol bilayers than R-AV-Ch. Model and natural membranes can be labeled by either injecting the probes via a water-soluble organic solvent or by co-lyophilizing probe and phospholipid prior to vesicle production. Detergent-solubilization studies involving 'raft' lipids showed that S-AV-Ch almost identically mimicked the behavior of cholesterol and that of R-AV-Ch was only slightly inferior. Overall, the data suggest that the AV-labeled cholesterol analogs mimic cholesterol behavior in membrane systems and will be useful in related studies.  相似文献   

6.
One of the new methods of studying the structure and dimensions of biological membranes is based on the F?rster's nonradiative energy transfer between special molecules, the so-called 'membrane fluorescent probes'. Further development of the approach is presented in this article. It consists of the combined use of the time-resolved and steady-state fluorescence data with subsequent computer simulation of the energy transfer in membranes. Anthracene as an energy donor, and 4-p-(dimethylamino)styryl-N-dodecylpyridinium (DSP-12) or 4-dimethylaminochalcone (DMC) as energy acceptors were bound with artificial phospholipid membrane vesicles ('liposomes'). The synchrotron radiation was used as an impulse source for the excitation light. The steady-state fluorescence data permit the area of possible probe localization in membranes to be distinguished, while the kinetic data allow them to be narrowed significantly. There is a good agreement between the obtained localization and our present-day knowledge of lipid bilayer structure. The accuracy of the method is ca. several Angstr?ms.  相似文献   

7.
8.
We report the spectroscopic characterization of six fluorescent probes for fluoride sensing and/or monitoring. All probes are based on the ability of the boronic acid group to interact with fluoride. The probes combine electron donor and withdrawing groups and involve the excited charge transfer mechanism. The change between the neutral form of the boronic acid group [R-B(OH)2], which is an electron withdrawing group, and the anionic trifluoro form [R-BF3-], which is an electron donating group, is at the origin of the different spectral changes observed for the investigated probes. Two probes are based on the stilbene structure where the boronic group in the 4 position is coupled with a cyano group, in one case, and the dimethylamino group in the other case, both at the 4' position. Another probe is based on the diphenyl-1,4-butadiene possessing the boronic acid group in the 4' position and a dimethylamino group in the 4" position. One probe is based on the diphenyloxazole structure having both the boronic acid and the dimethylamino groups in para positions. The two last probes reported are based on the benzalacetophenone (chalcone) structure, again coupling the boronic acid and dimethylamino groups. All probes show spectral shifts and/or intensity changes in the presence of fluoride resulting in most of the cases to a wavelength-ratiometric way for the detection and/or analysis of fluoride. Selectivity and stability constants are also presented and discussed.  相似文献   

9.
BACKGROUND: The inhibitors that belong to the serpin family are widely distributed regulatory molecules that include most protease inhibitors found in blood. It is generally thought that serpin inhibition involves reactive-centre cleavage, loop insertion and protease translocation, but different models of the serpin-protease complex have been proposed. In the absence of a spatial structure of a serpin-protease complex, a detailed understanding of serpin inhibition and the character of the virtually irreversible complex have remained controversial. RESULTS: We used a recently developed method for making precise distance measurements, based on donor-donor energy migration (DDEM), to accurately triangulate the position of the protease urokinase-type plasminogen activator (uPA) in complex with the serpin plasminogen activator inhibitor type 1 (PAI-1). The distances from residue 344 (P3) in the reactive-centre loop of PAI-1 to residues 185, 266, 313 and 347 (P1') were determined. Modelling of the complex using this distance information unequivocally placed residue 344 in a position at the distal end from the initial docking site with the reactive-centre loop fully inserted into beta sheet A. To validate the model, seven single cysteine substitution mutants of PAI-1 were used to map sites of protease-inhibitor interaction by fluorescence depolarisation measurements of fluorophores attached to these residues and cross-linking using a sulphydryl-specific cross-linker. CONCLUSIONS: The data clearly demonstrate that serpin inhibition involves reactive-centre cleavage followed by full-loop insertion whereby the covalently linked protease is translocated from one pole of the inhibitor to the opposite one.  相似文献   

10.
A novel F?rster donor-acceptor dye pair for an immunoassay based on resonance energy transfer (RET) is characterized with respect to its photophysical properties. As donor and acceptor, we chose the long-wavelength excitable cyanine dyes Cy5 and Cy5.5, respectively. Due to the perfect spectral overlap, an exceptionally high R(0) value of 68.7 A is obtained in solution. For biochemical applications, antibodies (IgG) are labeled with Cy5, while a tracer for competitive binding is synthesized by labeling bovine serum albumin (BSA) with an analyte derivative and Cy5.5. Binding the dyes to proteins at a low dye/protein ratio increases the fluorescence lifetimes and quantum yields, leading to an enhanced R(0) value of 85.2 A. At higher dye/protein ratios, the formation of nonfluorescent dimeric species causes a decrease in the fluorescence lifetime and quantum yield due to RET from monomeric dyes to dimers within one protein molecule. The F?rster distances could be calculated using the dimer absorption spectra to 83.9 and 83.6 A for Cy5 and Cy5.5, respectively. Upon binding of the Cy5-labeled IgG to the tracer, efficient quenching of Cy5 fluorescence is observed. Steady-state and time-resolved measurements reveal that approximately 50% of the quenching results in F?rster-type RET, while the residual quenching effect is caused by static quenching processes. The applicability of this dye pair is demonstrated in a homogeneous competitive immunoassay for the pesticide simazine.  相似文献   

11.
In this paper we describe a system for the quantitation and display of fluorescence at the cellular level. It uses a low light level video camera which is interfaced to a fluorescence microscope and to a microprocessor-controlled video digitizing system. With the use of a light pen entry system one can specify areas of the field for measurement. The data obtainable are the area and perimeter of the delimited zone, the distribution of pixel intensities within this zone over a 16-level gray scale, and a value for total fluorescence intensity. Statistical outputs for repeated measurements are also obtained. The system responds linearly to light input, has a high degree of reproducibility, and provides good spatial resolution. Using the DNA-specific dye, Hoechst 33248, in diploid fibroblasts as test material, the system is shown to be able to reproduce expected distributions for amounts of DNA per cell. The capabilities and advantages of pseudocolor display are also demonstrated. We conclude that, in conjunction with appropriate fluorescent probes, systems such as the one described make it possible to do quantitative histochemistry of living cells and to measure substances not previously amenable to study.  相似文献   

12.
13.
Molecular imaging methods to visualize myriad biochemical processes in bacteria have traditionally been dependent upon molecular biology techniques to incorporate fluorescent biomolecules (e.g., fusion proteins). Such methods have been instrumental in our understanding of how bacteria function but are not without drawbacks, including potential perturbation to native protein expression and function. To overcome these limitations, the use of fluorescent small-molecule probes has gained much attention. Here, we highlight examples from the recent literature that showcase the utility of small-molecule probes for the fluorescence imaging of bacterial cells, including electrophilic, metabolic, and enzyme-activated probes. Although the use of these types of compounds for bacterial imaging is still relatively new, the selected examples demonstrate the exciting potential of these critical tools in the exploration of bacterial physiology.  相似文献   

14.
A small-molecule probe for sulfatase is developed that shows a significant change in fluorescence upon reaction with sulfatase in an activity-based manner. As this probe is free from interference from background fluorescence caused by an unreacted probe, it could be a simple and efficient tool for the study of sulfatase activity.  相似文献   

15.
Creating new fluorescent probes for cell biology   总被引:1,自引:0,他引:1  
Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.  相似文献   

16.
Metalloenzymes catalyze reactions of molecular oxygen and its reduced forms through the controlled formation of metal-bound, activated oxygen intermediates. These intermediates have been a challenge to characterize and new experimental approaches capable of relating structure to reactivity under physiologically relevant conditions are needed. The application of a competitive isotope fractionation technique has enabled changes in O-O bonding to be probed during enzyme-catalyzed reactions. The derived isotope effects provide insights into the reaction mechanisms of O2 and O2*-, which probably could not have been obtained using more conventional methods.  相似文献   

17.
This paper describes and evaluates a 50 mHz radio telemetry system for studying river movements of adult Atlantic salmon ( Salmo salar ). In fresh water for most applications radio telemetry is preferable to ultrasonic telemetry, because the receiving element (antenna) can be above water, and radio signals are scarcely affected by turbulent, weedy or ice-covered water. Within the range of 10–200 mHz higher frequencies are preferred, since the efficient antenna size is inversely proportional to frequency, and attenuation of signals is independent of frequency. Transmitters were cylindrical (6.5–9.6 cm long * 1.9 cm diam) with a 0.5 wavelength antenna trailing from one end. Each emitted pulsed signals on one of 20 crystal-controlled channels between 49.100 and 49.385 mHz. Transmitters were placed in the stomachs of salmon and the antenna trailed out the last gill slit. Receivers were portable 20-channel manual or automatic scan models, and antennas were 48 cm diam capacitor tuned loops. Some salmon regurgitated transmitters. Two salmon were recaptured and showed no ill effects from carrying transmitters for 32 and 42 days. Pulse rate had little effect on known transmitter life under natural conditions. Known tag life was variable, but averaged 70 days for transmitters with 1000 mah batteries. The range of transmission of transmitters to a receiving system in an airplane at 410 m altitude was about 10 km, and to a boat about 1 km. Range to a land vehicle was variable depending on obstructions. From the airplane transmitters can be located within a radius of about 50 m.  相似文献   

18.
A method for the detection and characterization of GABA(A) receptors of neurons has been developed, which is based on the measurement of the activity of potential-dependent calcium channels using the fluorescence of the two-wavelength calcium-sensitive probe Fura-2. The method makes it possible to detect the ligands of GABA(A) receptors and determine the constants of activation and inhibition as well as the type of inhibition. The object of investigation was a young (two- to four-day-old) rat hippocampal cell culture in which GABA induces the depolarization and a transient increase in Ca2+ concentration in the cytosol of neurons due to the activation of potential-dependent calcium channels. It was shown that a short-time application of GABA induces a decrease in the amplitude of calcium responses to subsequent addition of the depolarizing agents GABA or KCl. However, at low amplitudes of calcium responses to the addition of GABA, this reducing effect on the subsequent addition of KCl was insignificant. It was found that the amplitudes of calcium responses to KCl and GABA are linearly dependent on the angular coefficient b = 3.41. This enabled one to develop a method of normalizing calcium signals, which makes it possible to compare experiments performed on different days and different cultures. By using this normalization technique, the values of EC50 = 2.21 +/- 0.14 ?M and the Hill coefficient = 1.9 +/- 0.2 were estimated. The blocker of potential-dependent calcium channels nifedipine suppressed simultaneously the amplitudes of calcium responses to the addition of KCl and GABA. In this case, the linear relationship between the amplitudes of calcium responses to the addition of KCl and GABA was retained. To verify the validity of the method, the constant of inhibition of a calcium signal and the type of inhibition for known noncompetitive and competitive antagonists of GABA(A) receptors were determined.  相似文献   

19.
A method for detecting and characterizing possible ligands of neuronal GABA(A) receptors has been developed, which is based on measuring the calcium response to GABA by the fluorescence of a two-wavelength Ca-sensitive probe Fura-2. In a young (2–4 days) rat hippocampal cell culture, GABA induced depolarization and a transient increase in Ca2+ concentration in the cytosol of neurons due to activation of voltage-dependent calcium channels. A brief application of GABA could attenuate the calcium response to a subsequent addition of depolarizing agents (GABA or KCl). However, at modest amplitudes of calcium response to GABA, the reduction of the subsequent effect of KCl was insignificant, and the amplitudes of responses to KCl and to GABA proved to be linearly correlated, with a slope of ∼3.4. Therefore, the GABA calcium signals could be normalized in order to compare experiments performed on different days and different cultures. With such normalization, we estimated the EC50 for GABA in neurons at ∼2.23 μM and the Hill coefficient at ∼1.9. A blocker of voltage-dependent calcium channels nifedipine suppressed the calcium responses both to KCl and to GABA, so that the linear relationship between their amplitudes was retained. To further validate the method, the IC50 and the type of inhibition were verified for known noncompetitive and competitive antagonists of GABA(A) receptors.  相似文献   

20.
Imaging the plasma membrane (PM) by fluorescence techniques using molecular fluorescent probes enable cell segmentation, studying membrane organization and dynamics, formation, and tracking of vesicles. Rational molecular design brings fluorescent PM probes to a new level, providing PM probes with new functions beyond basic PM staining and imaging. We herein review the latest advances in fluorescent PM probes for chemical and biophysical sensing as well as for super-resolution imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号