首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human skin has previously been shown to contain at least two genetically distinct types of collagen, type I and III. Here the presence of an additional form of collagen, α1(I)-trimer, is demonstrated. Skin collagen was solubilized by limited pepsin digestion and then fractionated by sequential precipitation with 1.5, 2.5, and 4.0 m NaCl at pH 7.4. The α-chain subunits of collagen were isolated by gel filtration and carboxymethylcellulose chromatography under denaturing conditions. The 1.5 and 2.5 m NaCl precipitates contained predominantly type I collagen with a chain composition of [α1(I)]2α2. In the 1.5 m precipitate a small amount of type III collagen was also recovered. In contrast, the 4.0 m NaCl fraction consisted almost exclusively of α-chains which on the basis of cyanogen bromide peptide mapping were shown to be identical with α1(I). The amino acid composition of these chains was also similar to that of α1(I), except that hydroxylysine was increased and lysine was correspondingly decreased. The content of 3-hydroxyproline was also increased. These results suggest that the α-chains in α1(I)-trimer are the same gene products as α1 in type I collagen, but that the co-translational or post-translational hydroxylation of lysyl residues is more extensive in α1(I)-trimer. Estimation of the quantitative amounts of α1(I)-trimer indicated that this collagen accounts for less than 5% of the total collagen in adult human skin. It is speculated, however, that α1(I)-trimer collagen may play a role in the stability and tensile strength of normal human skin and other tissues, and defects in its biochemistry might be associated with diseases of connective tissue.  相似文献   

2.
Type I and type I-trimer collagen, isolated from ductal infiltrating carcinoma of the human breast, have been tested for their behavior in neutral NaCl solutions. Evident diversities in their rate of precipitation at different saline concentrations have been found, since type I-trimer collagen precipitates at low NaCl molarity while type I collagen is mostly recovered in 2.6-3.6 M NaCl solutions. The native conformation of homotrimer collagen is proved by its ability to produce segment long-spacing crystallites and native-type fibrils.  相似文献   

3.
Bone from a patient with osteogenesis imperfecta contained type III collagen which was absent in control bone. The ratio of alpha 1(I)/alpha 2(I) in type I collagen of patient's bone was increased (2.9 vs. 2.3 +/- 0.2 in controls) and the ratio of dimers beta 11/beta 12/beta 22 was altered due to the increased beta 22 content. No abnormality was observed in collagen from the patient's skin. The altered composition of collagen in bone, but the normal composition in skin suggests that the disease in the patient is due to impaired regulation of the synthesis of collagens in bone, rather than by a mutation in one of the two type I collagen genes. Unlike in skin, all the type III collagen in patient's bone was pepsin-soluble indicating an inability of the bone to incorporate type III collagen into mature highly cross-linked extracellular matrix.  相似文献   

4.
It has been demonstrated that the content of the collagen type I is more affected by both chronic low protein diet feeding and chronic food deprivation (50% food intake) than the content of collagen type III. By introducing these dietary regimes the proportion of collagen type I to collagen type III ratio drops from 2.1 to 1.3 indicating the higher proportion of collagen type III in the skin at the end of the experiment (after 18 months of chronic feeding). It was also observed that the total concentration of hydroxyproline (hyp) in the skin decreases considerably in both food restricted animals and those fed a low protein diet. It is suggested that, under the present experimental conditions, the balance between collagen break-down and synthesis is shifted and, furthermore, that this shift is different for collagen type I and III and results in an altered ratio of these two collagen species in the skin. Refeeding of animals leads to a higher than normal collagen type I to III ratio indicating thus a relatively higher proportion of collagen type I in this tissue.  相似文献   

5.
哺乳动物皮肤真皮中胶原蛋白含量约为70%,主要为是I型、III型胶原蛋白,本实验利用稀酸溶解和酶法提取了大鼠皮肤中的总胶原蛋白,将胶原蛋白粗提品在60℃变性后用胰蛋白酶进行降解,液相色谱/质谱联用法分析了两种胶原蛋白的特征多肽,利用特征多肽比较了不同生长期大鼠皮肤中I型和III型胶原蛋白相对含量。结果表明,大鼠皮肤中的III型胶原蛋白的相对含量随生长期延长逐渐降低,而I型胶原蛋白的相对含量逐渐升高,8周后两种胶原蛋白的比例趋于稳定。本实验结果表明使用高效液相色谱/质谱联用法分析组织中的胶原蛋白类型及其动态变化具有可行性,为更好的临床应用提供了实验基础。  相似文献   

6.
Biosynthesis of skin collagens in normal and diabetic mice.   总被引:4,自引:0,他引:4       下载免费PDF全文
P Kern  M Moczar    L Robert 《The Biochemical journal》1979,182(2):337-345
Synthesis of collagens in vitro was studied on minced mouse skins incubated with [3H]-proline in organ-culture conditions. A comparative study was carried out on genetically diabetic mice (KK strain) and control mice (Swiss strain). After incubation, neutral-salt-soluble and acid-soluble collagens were extracted. The insoluble dermis was digested by pepsin and type I and type III collagens separated by differential precipitation in neutral salt solutions. Type I and Type III collagens were characterized by ion-exchange and molecular-sieve chromatography, amino acid analysis and by the characterization of CNBr peptides. In diabetic-mouse skin, the relative proportion of type III collagen was significantly higher than in control-mouse skin. The incorporation of radioactively labelled proline into hydroxyproline of type III collagen was significantly faster in diabetic-mouse skin than in control-mouse skin.No significant modifications in the total collagen content of the skin or of their rates of synthesis were observed between the two strains. Alteration in the ratio of type III to type I collagen in the diabetic-mouse skin can be interpreted as a sign of alteration of the regulation of collagen biosynthesis and may be related to the structural alterations observed in the diabetic intercellular matrix.  相似文献   

7.
We studied the interaction of proteoglycan subunit with both types I and II collagen. All three molecular species were isolated from the ox. Type II collagen, prepared from papain-digested bovine nasal cartilage, was characterized by gel electrophoresis, amino acid analysis and CM-cellulose chromatography. By comparison of type I collagen, prepared from papain-digested calf skin, with native calf skin acid-soluble tropocollagen, we concluded that the papain treatment left the collagen molecules intact. Interactions were carried out at 4 degrees C in 0.06 M-sodium acetate, pH 4.8, and the results were studied by two slightly different methods involving CM-cellulose chromatography and polyacrylamide-gel electrophoresis. It was demonstrated that proteoglycan subunit, from bovine nasal cartilage, bound to cartilage collagen. Competitive-interaction experiments showed that, in the presence of equal amounts of calf skin acid-soluble tropocollagen (type I) and bovine nasal cartilage collagen (type II), proteoglycan subunit bound preferentially to the type I collagen. We suggest from these results that, although not measured under physiological conditions, it is unlikely that the binding in vivo between type II collagen and proteoglycan is appreciably stronger than that between type I collagen and proteoglycan.  相似文献   

8.
The major resolution of the study was to develop a dynamic form of natural biopolymer material to improve the wound healing by inhibition of biofilm formation on the surface. The extraction of collagen was effectively prepared from Scomberomorus lineolatus fish skin. Lyophilized collagen sheet was liquefied in 0.5M acetic acid to form acidic solubilized collagen (ASC) for further analysis. Physicochemical characterization of ASC was performed by various techniques using a standard protocol. The yield of ASC form S.lineolatus is higher (21.5%) than the previous reported studies. The effect of collagen solubility is gradually decreases with increasing concentration of NaCl and collagen is mostly soluble in acidic pH conditions. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of ASC contains α chain composition of α1 and α2 subunits and was characterized as type I collagen. Ultraviolet absorption was regulated as the appropriate wavelength to optimize the collagen. Fourier-transform infrared spectroscopy and X-ray diffraction confirmed that the isolated collagen is a triple-helical structure. The biofilm formation of Pseudomonas aeruginosa was significantly reduced by collagen incorporated with isolated 3,5,7-trihydroxyflavone (collagen-TF) sheet up to 70%. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay executed on fibroblast cell lines (L929) shows that the collagen-TF sheet was 100% compatible to enrich the cell adhesion and proliferation. The current study was the first report to extract, purify, and characterize ASC from S. lineolatus fish skin and characterize as type I collagen. Based on the result, we design the natural biodegradable collagen loaded with TF compound (collagen-TF) for antibiofilm properties. Compared with different sources of polymer, fish skin collagen is more effective and can be used as a biopolymer sheet for wound healing, food, drug delivery, tissue engineering, and pharmaceutical application.  相似文献   

9.
The binding of collagens and fragments of type I collagen to heparin was studied by gel electrophoresis and affinity chromatography. Samples bound in 150 mM NaCl/10 mM Hepes (pH6.5) were eluted with 2 M NaCl, 6 M urea, or a linear gradient of 0.15–1.0 M NaCl. The triple-helical conformation was shown to be essential for binding. The vertebrate collagenase-generated C-terminal fragment, TCB was shown to have greater binding affinity for heparin than the N-terminal TCA fragment. Both type II collagen and the NC1 domain of type IV collagen bound to heparin, whereas pepsin-solubilized tetrameric type IV failed to bind.  相似文献   

10.
Summary The parents of a child with the clinical symptoms of Ehlers-Danlos syndrome type VI were identified as third-degree cousins. Biochemical analysis of the dermis of the patient revealed a complete lack of hydroxylysine in the dermal collagen. The dermis of both parents contained only half the amount of hydroxylysine found in healthy individuals. Hydroxylation of prolyl residues was normal in the skin of the patient and his parents. Investigation of the collagen synthesized by fibroblasts derived from the skin of the patient showed a normal proportion of type I and type III collagen. However, while hydroxylation of prolyl residues was normal in type I and type III collagen, hydroxylation of lysyl residues was markedly lower than normal in both type I and type III collagen.Presented at the Annual Meeting of the Arbeitsgemeinschaft Dermatologische Forschung (ADF) Frankfurt, November 18–20, 1977  相似文献   

11.
Selective decrease of type I collagen synthesis in Fraser mice skin   总被引:1,自引:0,他引:1  
Quantification and biosynthesis of type I and type III collagens were determined in skin of control and Fraser mice (CatFraser mutation), which exhibit a genetically determined cataract. Skin organ cultures were labelled with [3H]proline. Pepsin-solubilized collagens were studied using three different approaches: (a) differential salt precipitation at neutral pH, followed by SDS-polyacrylamide gel electrophoresis; (b) differential salt precipitation at acid pH followed by SDS-polyacrylamide gel electrophoresis. (c) CNBr peptide analysis. These methods gave consistent and reproducible results, indicating a selective decrease of type I collagen in Fraser mouse skin as compared to control mouse skin. Metabolic labelling of skin organ cultures showed a decreased specific radioactivity of hydroxy[3H]proline in type I collagen of Fraser mouse skin. The concordant results of these experiments suggest a genetically determined alteration of interstitial collagen metabolism in the Fraser mutation apparently specifically concerning the expression of type I collagen gene(s).  相似文献   

12.
Summary The distribution of collagen types I, III, IV, and of fibronectin has been studied in the human dermis by light and electron-microscopic immunocytochemistry, using affinity purified primary antibodies and tetramethylrhodamine isothiocyanate-conjugated secondary antibodies. Type I collagen was present in all collagen fibers of both papillary and reticular dermis, but collagen fibrils, which could be resolved as discrete entities, were labeled with different intensity. Type III collagen codistributed with type I in the collagen fibers, besides being concentrated around blood vessels and skin appendages. Coexistence of type I and type III collagens in the collagen fibrils of the whole dermis was confirmed by ultrastructural double-labelling experiments using colloidal immunogold as a probe. Type IV collagen was detected in all basement membranes. Fibronectin was distributed in patches among collagen fibers and was associated with all basement membranes, while a weaker positive reaction was observed in collagen fibers. Ageing caused the thinning of collagen fibers, chiefly in the recticular dermis. The labeling pattern of both type I and III collagens did not change in skin samples from patients of up to 79 years of age, but immunoreactivity for type III collagen increased in comparison to younger skins. A loss of fibronectin, likely related to the decreased morphogenetic activity of tissues, was observed with age.  相似文献   

13.
The distribution of sites of type I collagen gene expression was studied in frozen sections of skin of 4 and 9 month-old calf fetuses by in situ hybridization using a human pro-alpha 1 type I collagen cDNA. The labelling varied with the different layers of the dermis and with the developmental stage considered. In the 4 month old fetus skin, the label appeared concentrated in the upper layer of the dermis at the lewel of the hair follicles. In the 9 month-old fetus skin, the difference of labelling between upper papillary dermis and lower dermis was less marked. Comparatively the distribution of the extracellular type I collagen was determined by indirect immunofluorescence. This collagen appeared present throughout the whole dermis with slight variations at 4 months, where there was less extracellular collagen near the hair bulbs. These results are in agreement with the idea that the collagen synthesis follows cutaneous differentiation. In addition, they support the hypothesis that collagen is deposited once morphogenetic events have occurred and plays thus a stabilizing role in formation of cutaneous appendages.  相似文献   

14.
A study was carried out on collagen chains of FBJ virus-induced osteosarcoma. Collagens were extracted from pepsin-digested tissues and fractionated by differential salt precipitation. An acidic 0.7 M NaCl precipitate contained type I, type I trimer and/or type III collagens. Collagen fractions precipitated at acidic 1.2 M NaCl showed features characteristic of type V collagen consisting of three chains (mol. weights of which were 120K, 110K and 100K daltons). None of these chains, however, was identical to any of the B, C or A chains reported by Sage et al. in 1979 (1), judging from amino acid composition, cyanogen bromide cleavage and phosphocellulose chromatography data.  相似文献   

15.
Human skin was sliced with a dermatome, and the ratio of type I to type III collagens at various depths was assayed by comparing the quantities of peptides of each derived from cyanogen bromide digestion of the cut skin. Although immunofluorescent studies have suggested type III collagen is located predominantly beneath the epidermis and around appendages, biochemical determination demonstrates the same ratio of type I to type III collagen at all levels of the dermis even in the absence of cutaneous appendages.  相似文献   

16.
Collagen types I, III, and V in human embryonic and fetal skin   总被引:3,自引:0,他引:3  
The dermis of human skin develops embryonically from lateral plate mesoderm and is established in an adult-like pattern by the end of the first trimester of gestation. In this study the structure, biochemistry, and immunocytochemistry of collagenous matrix in embryonic and fetal dermis during the period of 5 to 26 weeks of gestation was investigated. The dermis at five weeks contains fine, individual collagen fibrils draped over the surfaces of mesenchymal cells. With increasing age, collagen matrix increases in abundance in the extracellular space. The size of fibril diameters increases, and greater numbers of fibrils associate into fiber bundles. By 15 weeks, papillary and reticular regions are recognized. Larger-diameter fibrils, larger fibers, denser accumulations of collagen, and fewer cells distinguish the deeper reticular region from the finer, more cellular papillary region located beneath the epidermis. The distribution of collagen types I, III, and V were studied at the light microscope level by immunoperoxidase staining and at the ultrastructural level by transmission (TEM) and scanning electron microscopy (SEM) with immunogold labeling. By immunoperoxidase, types I and III were found to be evenly distributed, regardless of fetal age, throughout the dermal and subdermal connective tissue with an intensification of staining at the dermal-epidermal junction (DEJ). Staining for types III and V collagen was concentrated around blood vessels. Type V collagen was also localized in basal and periderm cells of the epidermis. By immuno-SEM, types I and III were found associated with collagen fibrils, and type V was localized to dermal cell surfaces and to a more limited extent with fibrils. The results of biochemical analyses for relative amounts of types I, III, and V collagen in fetal skin extracts were consistent with immunoperoxidase data. Type I collagen was 70-75%, type III collagen was 18-21%, and type V was 6-8% of the total of these collagens at all gestational ages tested, compared to 85-90% type I, 8-11% type III, and 2-4% type V in adult skin. The enrichment of both types III and V collagen in fetal skin may reflect in part the proportion of vessel- and nerve-associated collagen versus dermal fibrillar collagen. The accumulation of dermal fibrillar collagen with increasing age would enhance the estimated proportion of type I collagen, even though the ratios of type III to I in dermal collagen fibrils may be similar at all ages.  相似文献   

17.
Quantification and biosynthesis of type I and type III collagens were determined in skin of control and Fraser mice (CatFraser mutation), which exhibit a genetically determined cataract. Skin organ cultures were labelled with [3H]proline. Pepsin-solubilized collagens were studied using three different approaches: (a) differential salt precipitation at neutral pH, followed by SDS-polyacrylamide gel electrophoresis; (b) differential salt precipitation at acid pH followed by SDS-polyacrylamide gel electrophoresis. (c) CNBr peptide analysis. These methods gave consistent and reproducible results, indicating a selective decrease of type I collagen in Fraser mouse skin as compared to control mouse skin. Metabolic labelling of skin organ cultures showed a decreased specific radioactivity of hydroxy[3H]proline in type I collagen of Fraser mouse skin. The concordant results of these experiments suggest a genetically determined alteration of interstitial collagen metabolism in the Fraser mutation apparently specifically concerning the expression of type I collagen gene(s).  相似文献   

18.
Rat fibrosarcoma induced by subcutaneous injection of methylcholanthrene was found to contain at least three different types of collagen. Two of them were identified as type I and type III collagens, the third (fraction B) seems to be specific for this tumour. The ratio of type I to type III collagen is lower in fibrosarcoma than in normal rat skin. The number of hydroxyproline residues in alpha 1 (I), alpha 2 (I) and alpha 1 (III) chains of tumour collagen appears to be higher than in the corresponding chains of rat skin collagen. Fraction B is composed of three identical alpha chains connected with disulphide bonds. It contains a relatively low amount of glycine: 234 molecules per 1000 residues. The amount of hydroxyproline and cysteine is similar to that found in the type III collagen.  相似文献   

19.
J M Burke  G Balian  R Ross  P Bornstein 《Biochemistry》1977,16(14):3243-3249
Analysis of pepsin-resistant proteins produced in culture by monkey aortic smooth muscle cells (SMC) indicates the synthesis of types I and III collagen. As determined by carboxymethylcellulose chromatography and disc gel electrophoresis, SMC cultures synthesize more type III collagen than monkey skin fibroblast cultures; aortic adventitial cell cultures (a mixture of SMC and fibroblasts) synthesize an intermediate amount of type III collagen. Both types I and III procollagens can also be isolated from the culture medium of SMC and skin fibroblasts. The procollagens were separated by diethylaminoethylcellulose (DEAE-cellulose) chromatography in identified by electrophoresis and after cleavage with pepsin and cyanogen bromide. Quantitation of the procollagen by DEAE-cellulose chromatography suggests that 68% of the SMC procollagens and less than 10% of the skin fibroblast procollagens are type III. On the other hand, estimation of the proportions of collagen types secreted by cells, employing pepsin digestion of cell culture medium at 15 degrees C, leads to an underestimation of the amount of type III collagen relative to type I. SMC and fibroblasts may differ in their ability to convert type I procollagen to collagen ad indicated by the observation that skin fibroblast culture medium contains both pN and pC collagen intermediates after 24 h, while cultures of SMC essentially lack the pC collagen intermediates.  相似文献   

20.
Calf skin collagen was solubilized by incubating acid-extracted calf skin with pepsin at pH 2.0 and 25 degrees C, conditions that did not cause degradation of the triple helical region of collagen. Type III collagen was separated from type I collagen by differential salt precipitation at pH 7.5. The isolated type III collagen contained mainly gamma and higher molecular weight components cross-linked by reducible and/or non-reducible bonds. The isolated alpha1 (III) chains had an amino acid composition characteristic of type III collagen. Denatured but unreduced type III collagen, chromatographed on carboxymethyl-cellulose, eluted in the alpha 2 region, while after reduction and alkylation the alpha1 (III) chains eluted between the positions of alpha1 (I) and alpha2. The mid-point melting temperature temperature (tm) of type III collagen (35.1 degrees C) in a citrate buffer at pH 3.7 was somewhat lower than that of type I collagen (35.9 degrees C). Renaturation experiments at 25 degrees C showed that denatured type III collagen molecules with intact intramolecular disulfide bridges (gamma components) reform the triple helical structure of collagen much faster than reduced and carboxymethylated alpha1 (III) chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号