首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measles, mumps and rubella are vaccine‐preventable diseases; however limited epidemiological data are available from low‐income or developing countries. Thus, it is important to investigate the transmission of these viruses in different geographical regions. In this context, a cell culture‐based rapid and reliable immuno‐colorimetric assay (ICA) was established and its utility studied. Twenty‐three measles, six mumps and six rubella virus isolates and three vaccine strains were studied. Detection by ICA was compared with plaque and RT‐PCR assays. In addition, ICA was used to detect viruses in throat swabs (n = 24) collected from patients with suspected measles or mumps. Similarly, ICA was used in a focus reduction neutralization test (FRNT) and the results compared with those obtained by a commercial IgG enzyme immuno assay. Measles and mumps virus were detected 2 days post‐infection in Vero or Vero‐human signaling lymphocytic activation molecule cells, whereas rubella virus was detected 3 days post‐infection in Vero cells. The blue stained viral foci were visible by the naked eye or through a magnifying glass. In conclusion, ICA was successfully used on 35 virus isolates, three vaccine strains and clinical specimens collected from suspected cases of measles and mumps. Furthermore, an application of ICA in a neutralization test (i.e., FRNT) was documented; this may be useful for sero‐epidemiological, cross‐neutralization and pre/post‐vaccine studies.  相似文献   

2.
Inverse correlations between genetic variability and parasitism are important concerns for conservation biologists. We examined correlations between neutral genetic variability and the presence of antibodies to canine distemper virus (CDV) and feline parvovirus (FPV) in a free-ranging population of raccoons. Over 3 years there was a strong relationship between age and seroprevalence rates. Most young animals were seronegative to CDV and FPV, but the oldest age class was greater than 80 per cent seropositive to both viruses. CDV-seropositive animals had greater heterozygosity and lower measures of inbreeding compared with CDV-seronegative animals. This relationship was strongest among the youngest animals and did not occur during a 1 year CDV epidemic. In contrast, FPV-seropositive animals only had significantly lower measures of inbreeding in 1 year, perhaps because FPV-associated mortality is relatively low or primarily occurs among very young individuals that were under-represented in our sampling. These results suggest that even in large outcrossing populations, animals with lower heterozygosity and higher measures of inbreeding are less likely to successfully mount an immune response when challenged by highly pathogenic parasites.  相似文献   

3.
Tatsuo H  Ono N  Yanagi Y 《Journal of virology》2001,75(13):5842-5850
Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses.  相似文献   

4.
High mutation rates typical of RNA viruses often generate a unique viral population structure consisting of a large number of genetic microvariants. In the case of viral pathogens, this can result in rapid evolution of antiviral resistance or vaccine-escape mutants. We determined a direct estimate of the mutation rate of measles virus, the next likely target for global elimination following poliovirus. In a laboratory tissue culture system, we used the fluctuation test method of estimating mutation rate, which involves screening a large number of independent populations initiated by a small number of viruses each for the presence or absence of a particular single point mutation. The mutation we focused on, which can be screened for phenotypically, confers resistance to a monoclonal antibody (MAb 80-III-B2). The entire H gene of a subset of mutants was sequenced to verify that the resistance phenotype was associated with single point mutations. The epitope conferring MAb resistance was further characterized by Western blot analysis. Based on this approach, measles virus was estimated to have a mutation rate of 9 × 10−5 per base per replication and a genomic mutation rate of 1.43 per replication. The mutation rates we estimated for measles virus are comparable to recent in vitro estimates for both poliovirus and vesicular stomatitis virus. In the field, however, measles virus shows marked genetic stability. We briefly discuss the evolutionary implications of these results.  相似文献   

5.
The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to extinction when the load of deleterious mutations is artificially increased with a mutagen, and becomes too high for the population to be maintained. Although chemical mutagens have been shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical underpinnings of this process are still not clearly established. A few recent models sought to describe lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a continuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e. compensatory) mutations. We also include an additional class of lethal mutations. Second, we couple this evolutionary model with an epidemiological model accounting for the within-host dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the genomic mutation rate U. We also provide a simple expression for the critical mutation rate leading to extinction. Stochastic simulations show that these predictions are accurate for a broad range of parameter values. As they depend on a small set of measurable epidemiological and evolutionary parameters, we used available information on several viruses to make quantitative and testable predictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal mutagenesis as an efficient therapeutic strategy.  相似文献   

6.
Phylodynamic techniques combine epidemiological and genetic information to analyze the evolutionary and spatiotemporal dynamics of rapidly evolving pathogens, such as influenza A or human immunodeficiency viruses. We introduce 'allele dynamics plots' (AD plots) as a method for visualizing the evolutionary dynamics of a gene in a population. Using AD plots, we propose how to identify the alleles that are likely to be subject to directional selection. We analyze the method's merits with a detailed study of the evolutionary dynamics of seasonal influenza A viruses. AD plots for the major surface protein of seasonal influenza A (H3N2) and the 2009 swine-origin influenza A (H1N1) viruses show the succession of substitutions that became fixed in the evolution of the two viral populations. They also allow the early identification of those viral strains that later rise to predominance, which is important for the problem of vaccine strain selection. In summary, we describe a technique that reveals the evolutionary dynamics of a rapidly evolving population and allows us to identify alleles and associated genetic changes that might be under directional selection. The method can be applied for the study of influenza A viruses and other rapidly evolving species or viruses.  相似文献   

7.
The amount of quantitative genetic variation within an invasive species influences its ability to adapt to conditions in the new range and its long-term persistence. Consequently, this aspect of genetic diversity (or evolutionary potential) can be a key factor in the success of species invasions. Previous studies have compared the evolutionary potential of populations in introduced versus native ranges of invasive species, but to date no study has examined differences among introduced-range populations of such species in levels of quantitative genetic variation expressed in ecologically relevant environments. We assessed quantitative variation of fitness, life-history, and functional traits in six geographically separate introduced-range populations of the invasive annual Polygonum cespitosum, by comparing norms of reaction for a large sample of genotypes (16–19 per population) expressed in response to two glasshouse environments simulating contrasting habitats in this new range. Patterns of reaction norm diversity varied considerably among the 6 populations studied. Two populations showed very little quantitative genetic variation in both environments. In contrast, two other populations contained significant genetic variation for fitness and life-history traits in the form of genotypes with low performance in both habitats. Finally, two populations showed significant norm of reaction diversity in the form of cross-over interaction: genotypes that performed relatively well in one environment did poorly in the other. Differences among populations in potential selective response are likely to affect the dynamics and future spread of P. cespitosum, since specific populations will likely contribute differently to the invasion process. More generally, our results suggest that the evolutionary component of long-term invasion success may depend on population rather than on species-level processes.  相似文献   

8.
Despite extensive research into the mechanisms underlying population cyclicity, we have little understanding of the impacts of numerical fluctuations on the genetic variation of cycling populations. Thus, the potential implications of natural and anthropogenically‐driven variation in population cycle dynamics on the diversity and evolutionary potential of cyclic populations is unclear. Here, we use Canada lynx Lynx canadensis matrix population models, set up in a linear stepping‐stone, to generate demographic replicates of biologically realistic cycling populations. Overall, increasing cycle amplitude predictably reduced genetic diversity and increased genetic differentiation, with cyclic effects increased by population synchrony. Modest dispersal rates (1–3% of the population) between high and low amplitude cyclic populations did not diminish these effects suggesting that spatial variation in cyclic amplitude should be reflected in patterns of genetic diversity and differentiation at these rates. At high dispersal rates (6%) groups containing only high amplitude cyclic populations had higher diversity and lower differentiation than those mixed with low amplitude cyclic populations. Negative density‐dependent dispersal did not impact genetic diversity, but did homogenize populations by reducing differentiation and patterns of isolation by distance. Surprisingly, temporal changes in diversity and differentiation throughout a cycle were not always consistent with population size. In particular, negative density‐dependent dispersal simultaneously decreased differences in genetic diversity while increasing differences in genetic differentiation between numerical peaks and nadirs. Combined, our findings suggest demographic changes at fine temporal scales can impact genetic variation of interacting populations and provide testable predictions relating population cyclicty to genetic variation. Further, our results suggest that including realistic demographic and dispersal parameters in population genetic models and using information from temporal changes in genetic variation could help to discern complex demographic scenarios and illuminate population dynamics at fine temporal scales.  相似文献   

9.
目的建立水貂犬瘟热动物模型,并利用水貂犬瘟热模型评价不同犬瘟热强毒株的毒力,为水貂犬瘟热病毒疫苗的研究奠定基础。方法从猴、藏獒、犬的病料中分离犬瘟热病毒,测定犬瘟热病毒的毒力,并进行传代培养。利用犬的犬瘟热动物模型筛选稳定的犬瘟热强毒株,进行水貂犬瘟热动物模型的建立及其毒力评估。结果筛选出了稳定的犬瘟热强毒株并进行了家犬动物实验,同时表现出了强烈的临床症状,并利用不同的代次毒进行了犬瘟热动物模型的建立。结论成功建立了犬瘟热动物模型并对不同来源的犬瘟热病毒毒力进行了评估。  相似文献   

10.
Influenza A viruses from wild aquatic birds, their natural reservoir species, are thought to have reached a form of stasis, characterized by low rates of evolutionary change. We tested this hypothesis by estimating rates of nucleotide substitution in a diverse array of avian influenza viruses (AIV) and allowing for rate variation among lineages. The rates observed were extremely high, at >10(-3) substitutions per site, per year, with little difference among wild and domestic host species or viral subtypes and were similar to those seen in mammalian influenza A viruses. Influenza A virus therefore exhibits rapid evolutionary dynamics across its host range, consistent with a high background mutation rate and rapid replication. Using the same approach, we also estimated that the common ancestors of the hemagglutinin and neuraminidase sequences of AIV arose within the last 3,000 years, with most intrasubtype diversity emerging within the last 100 years and suggestive of a continual selective turnover.  相似文献   

11.
A strain of camel kidney cells was developed and carried in serial passages. The subcultures were slow-growing in the early passages and were composed of heterogeneous cell population. By the 35th passage, the growth rate increased, and more homogeneous cells, mostly of the epithelioid type, were seen. The cell strain was highly susceptible to West Nile, Sindbis, vesicular stomatitis, adeno, and vaccinia viruses, and also was susceptible to herpes simplex, rinderpest, measles, and canine distemper viruses.  相似文献   

12.
Animal host–microbe interactions are a relevant concern for wildlife conservation, particularly regarding generalist pathogens, where domestic host species can play a role in the transmission of infectious agents, such as viruses, to wild animals. Knowledge on viral circulation in wild host species is still scarce and can be improved by the recent advent of modern molecular approaches. We aimed to characterize the fecal virome and identify viruses of potential conservation relevance of diarrheic free‐ranging wolves and sympatric domestic dogs from Central Portugal, where a small and threatened wolf population persists in a highly anthropogenically modified landscape. Using viral metagenomics, we screened diarrheic stools collected from wolves (n = 8), feral dogs (n = 4), and pet dogs (n = 6), all collected within wolf range. We detected novel highly divergent viruses as well as known viral pathogens with established effects on population dynamics, including canine distemper virus, a novel bocavirus, and canine minute virus. Furthermore, we performed a 4‐year survey for the six wolf packs comprising this endangered wolf population, screening 93 fecal samples from 36 genetically identified wolves for canine distemper virus and the novel bocavirus, previously identified using our metagenomics approach. Our novel approach using metagenomics for viral screening in noninvasive samples of wolves and dogs has profound implications on the knowledge of both virology and wildlife diseases, establishing a complementary tool to traditional screening methods for the conservation of threatened species.  相似文献   

13.
A non-controlled longitudinal study was conducted to evaluate the combined vaccine against measles, mumps and rubella (MMR) immunogenicity in 150 children vaccinated in the routine of three health units in the city of Rio de Janeiro, Brazil, 2008-2009, without other vaccines administered during the period from 30 days before to 30 days after vaccination. A previous study conducted in Brazil in 2007, in 1,769 children ranging from 12-15 months of age vaccinated against yellow fever and MMR simultaneously or at intervals of 30 days or more between doses, had shown low seroconversion for mumps regardless of the interval between administration of the two vaccines. The current study showed 89.5% (95% confidence interval: 83.3; 94.0) seroconversion rate for mumps. All children seroconverted for measles and rubella. After revaccination, high antibody titres and seroconversion rates were achieved against mumps. The results of this study and others suggest that two MMR doses confer optimal immunoresponses for all three antigens and the possible need for additional doses should be studied taking into account not only serological, but also epidemiological data, as there is no serological correlate of protection for mumps.  相似文献   

14.
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.  相似文献   

15.
Disease can generate intense selection pressure on host populations, but here we show that acquired immunity in a population subject to repeated disease outbreaks can impede the evolution of genetic disease resistance by maintaining susceptible genotypes in the population. Interference between the life-history schedule of a species and periodicity of the disease has unintuitive effects on selection intensity, and stochasticity in outbreak period further reduces the rate of spread of disease-resistance alleles. A general age-structured population genetic model was developed and parameterized using empirical data for phocine distemper virus (PDV) epizootics in harbor seals. Scenarios with acquired immunity had lower levels of epizootic mortality compared with scenarios without acquired immunity for the first PDV outbreaks, but this pattern was reversed after about five disease cycles. Without acquired immunity, evolution of disease resistance was more rapid, and long-term population size variation is efficiently dampened. Acquired immunity has the potential to significantly influence rapid evolutionary dynamics of a host population in response to age-structured disease selection and to alter predicted selection intensities compared with epidemiological models that do not consider such feedback. This may have important implications for evolutionary population dynamics in a range of human, agricultural, and wildlife disease settings.  相似文献   

16.
Pathogen species with high mutation rates are likely to accumulate deleterious mutations that reduce their reproductive potential within the host. By altering the within-host growth rate of the pathogen, the deleterious mutation load has the potential to affect epidemiological properties such as prevalence, mean pathogen load, and the mean duration of infections. Here, I examine an epidemiological model that allows for multiple segregating mutations that affect within-host replication efficiency. The model demonstrates a complex range of outcomes depending on pathogen mutation rate, including two distinct, widely separated mutation rates associated with high pathogen prevalence. The low mutation rate prevalence peak is associated with small amounts of genetic diversity within the pathogen population, relatively stable prevalence and infection dynamics, and genetic variation partitioned between hosts. The high mutation rate peak is characterized by considerable genetic diversity both within and between hosts, relatively frequent invasions by more virulent types, and is qualitatively similar to an RNA virus quasispecies. The two prevalence peaks are separated by a valley where natural selection favors evolution toward the optimal within-host state, which is associated with high virulence and relatively rapid host mortality. Both chronic and acute infections are examined using stochastic forward simulations.  相似文献   

17.
阐明中国(未包括香港、澳门特别行政区和台湾地区,下同)2018-2019年流行性腮腺炎(流腮)流行特征和病毒基因特征。对2018-2019年中国流腮流行病学和病毒学监测数据进行描述流行病学和分子流行病学分析。2018-2019年中国流腮年报告发病率分别为18.65/10万和21.48/10万,15岁以下儿童和青少年是我国流腮的高发人群,分别占总病例数的85.30%和82.56%。流腮的流行具有明显的季节性特征。全国各省、自治区、直辖市份均有流腮病例报告,西部和中部地区发病率高于东部地区。2018-2019年共获得160条腮腺炎病毒(Mumps virus,MuV)SH基因序列,其中150条(93.75%)序列鉴定为F基因型MuV,在我国11个省份检测到;10条(6.25%)序列为G基因型MuV,2019年在广东、湖北和新疆3个省份检测到。和我国既往流行MuV代表株相比,2018-2019年流行的F基因型MuV代表株序列在基因亲缘性关系树上相对集中。现阶段我国流腮的流行病学特征未发生明显改变,仍呈现病毒自然流行模式;F基因型作为优势流行基因型,在我国大部分地区持续流行,但毒株的遗传多态性有所降低,这可能和我国实施1剂次腮腺炎疫苗常规免疫策略有关。G基因型MuV主要在我国局部地区流行,但流行范围在逐渐扩大。建议进一步加强两剂次腮腺炎疫苗接种工作,降低我国腮腺炎易感人群。同时持续性开展MuV流行学和病毒学监测工作,为鉴别病毒的来源,确定病毒传播途径和评估腮腺炎疫苗免疫策略奠定重要的基础。  相似文献   

18.
犬瘟热是一种犬瘟热病毒引起的多种动物共患传染病,在世界范围内的家犬和野生动物中多次爆发。犬瘟热的跨种间传播对多种野生动物如东北虎、非洲狮、雪豹、大熊猫等野生动物的种群安全造成严重威胁,并且感染的宿主范围仍在扩大。近年来的研究表明,犬瘟热病毒的不断变异和野生动物栖息地内流浪犬只的增多使我国野生动物尤其是野外种群正在面临犬瘟热的严重威胁。为了更好地应对犬瘟热对野生动物的危害,本文综述了犬瘟热的病原特征和在野生动物中的流行病学、致病机制、诊断与治疗以及疫苗免疫方面的研究进展,在此基础上提出了针对传染源、传播途径、易感动物三方面的控制措施来减少野生动物犬瘟热的传播风险。目前,由于国内自然保护区科研技术力量欠缺以及防控意识薄弱,对于野生动物犬瘟热的监测处于空白状态,这无疑加大了野生动物犬瘟热的防控难度。因此,为了保障我国野生动物种群安全,我们需要加强在野生动物犬瘟热监测与流行病学方面的研究工作,建立有效的监测防控体系将犬瘟热阻挡在野生动物种群之外。  相似文献   

19.
Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species’ evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.  相似文献   

20.
The evolution and population dynamics of human influenza in Taiwan is a microcosm of the viruses circulating worldwide, which has not yet been studied in detail. We collected 343 representative full genome sequences of human influenza A viruses isolated in Taiwan between 1979 and 2009. Phylogenetic and antigenic data analysis revealed that H1N1 and H3N2 viruses consistently co-circulated in Taiwan, although they were characterized by different temporal dynamics and degrees of genetic diversity. Moreover, influenza A viruses of both subtypes underwent internal gene reassortment involving all eight segments of the viral genome, some of which also occurred during non-epidemic periods. The patterns of gene reassortment were different in the two subtypes. The internal genes of H1N1 viruses moved as a unit, separately from the co-evolving HA and NA genes. On the other hand, the HA and NA genes of H3N2 viruses tended to segregate consistently with different sets of internal gene segments. In particular, as reassortment occurred, H3HA always segregated as a group with the PB1, PA and M genes, while N2NA consistently segregated with PB2 and NP. Finally, the analysis showed that new phylogenetic lineages and antigenic variants emerging in summer were likely to be the progenitors of the epidemic strains in the following season. The synchronized seasonal patterns and high genetic diversity of influenza A viruses observed in Taiwan make possible to capture the evolutionary dynamic and epidemiological rules governing antigenic drift and reassortment and may serve as a “warning” system that recapitulates the global epidemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号