首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new heterobifunctional linker containing an aldehyde-reactive aminooxy group and a thiol-reactive maleimide group, namely N-[4-(aminooxy)butyl]maleimide, was synthesized as a stable HCl salt by O-alkylation of either N-hydroxyphthalimide or N-(4-monomethoxytrityl)hydroxylamine, followed by N-alkylation of maleimide, in an overall yield of 18% (seven steps) or 29% (five steps), respectively. This heterobifunctional linker allowed a simple and efficient synthesis of a maleimide-containing thiol-reactive (18)F-labeling agent. Thus, N-[4-[(4-[(18)F]fluorobenzylidene)aminooxy]butyl]maleimide (specific activity: approximately 3000 Ci/mmol at end of synthesis) was synthesized in two steps involving the preparation of 4-[(18)F]fluorobenzaldehyde, followed by its aminooxy-aldehyde coupling reaction to the heterobifunctional linker, with an overall radiochemical yield of approximately 35% (decay corrected) within approximately 60 min from end of bombardment. Initial (18)F-labeling experiments were carried out using a thiol-containing tripeptide glutathione (GSH) and a 5'-thiol-functionalized oligodeoxynucleotide (5'-S-ODN) in phosphate-buffered saline (PBS, pH 7.5). After standing at room temperature for 10 min, the (18)F-labeled GSH and 5'-S-ODN were obtained in (18)F-labeling yields of approximately 70% and approximately 5% (decay-corrected), respectively. The heterobifunctional linker is easy to synthesize and provides a facile access to the maleimide-containing thiol-reactive (18)F-labeling agent, which could be advantageously employed in the development of (18)F-labeled biomomolecules for use with positron emission tomography.  相似文献   

2.
Annexin V is useful in detecting apoptotic cells by binding to phosphatidylserine (PS) that is exposed on the outer surface of the cell membrane during apoptosis. In this study, we examined the labeling of annexin V-128, a mutated form of annexin V that has a single cysteine residue at the NH 2 terminus, with the thiol-selective reagent (18)F-labeling agent N-[4-[(4-[(18)F]fluorobenzylidene)aminooxy]butyl]maleimide ([(18)F]FBABM). We also examined the cell binding affinity of the (18)F-labeled annexin V-128 ([(18)F]FAN-128). [(18)F]FBABM was synthesized in two-step, one-pot method modified from literature procedure. (Toyokuni et al., Bioconjugate Chem. 2003, 14, 1253-1259). The average yield of [(18)F]FBABM was 23 +/- 4% (n = 4, decay-corrected) and the specific activity was approximately 6000 Ci/mmol. The total synthesis time was approximately 92 min. The critical improvement of this study was identifying and then developing a purification method to remove an impurity N-[4-[(4-dimethylaminobenzylidene)aminooxy]butyl]maleimide 4, whose presence dramatically decreased the yield of protein labeling. Conjugation of [(18)F]FBABM with the thiol-containing annexin V-128 gave [(18)F]FAN-128 in 37 +/- 9% yield (n = 4, decay corrected). Erythrocyte binding assay of [(18)F]FAN-128 showed that this modification of annexin V-128 did not compromise its membrane binding affinity. Thus, an in vivo investigation of [ (18)F]FAN-128 as an apoptosis imaging agent is warranted.  相似文献   

3.
Three novel (18)F-labeled 4-aminoquinazoline derivatives, N-(3-chloro-4-fluorophenyl)-6-(2-[(18)F]fluoroethoxy)-7-methoxyquinazolin-4-amine([(18)F]1), N-(3-ethynylphenyl)-6-(2-[(18)F]fluoroethoxy)-7-methoxyquinazolin-4-amine([(18)F]2), and N-(3-bromophenyl)-6-(2-[(18)F]fluoroethoxy)-7-methoxyquinazolin-4-amine([(18)F]3) were synthesized and radiolabeled by two-step reaction with overall radiochemical yield of 21-24% (without decay corrected). Then we carried out their biodistribution experiments in S180 tumor-bearing mice. Results showed that they had certain concentration accumulation in tumor and fast clearance from muscle and blood. It was encouraging that [(18)F]3 was competitive among three (18)F-labeled 4-aminoquinazoline derivatives in some aspects such as tumor/muscle uptake ratio reaching 7.70 at 60 min post-injection, tumor/blood uptake ratio reaching 6.61 at 120 min post-injection. So we compared radioactivity characteristics of [(18)F]3 with those of [(18)F]-FDG and L-[(18)F]-FET in the same animal model. The absolute radioactivity uptake of [(18)F]3 in tumor reached 3.31 at 60 min p.i., which was slightly higher than [(18)F]-FDG (2.16) and L-[(18)F]-FET (2.75) at the same time phase. For [(18)F]3, tumor/muscle uptake ratio peaked 7.70 at 60 min, which was obviously superior to those of [(18)F]-FDG and L-[(18)F]-FET at all time points. The tumor/brain uptake ratios of [(18)F]3 were 10.36, 17.42, 41.11 at 30 min, 60 min and 120 min post-injection, respectively, and are much higher than those of L-[(18)F] FET (2.54, 2.92 and 2.95) and [(18)F]-FDG (0.61, 1.02 and 1.33) at the same time points. All these results indicate that [(18)F]3 is promising to become a potential PET tumor imaging agent.  相似文献   

4.
The synthesis of an (18)F-labeled sufentanil analogue with apparent high mu-opioid receptor selectivity is reported. Intravenous injection of N-[4-(methoxymethyl)-1-[2-(2-thienyl)ethyl]-4-piperidinyl]-N-phenyl-2-(+/-)-[(18)F]fluoropropan-amide in mice resulted in high brain uptake and a regional brain activity distribution corresponding to the mu-opioid receptor expression pattern. The developed ligand is a promising tracer for extended protocols in mu-opioid receptor mapping and quantitation with positron emission tomography.  相似文献   

5.
2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG) as the most important PET radiotracer is available in almost every PET center. However, there are only very few examples using [(18)F]FDG as a building block for the synthesis of (18)F-labeled compounds. The present study describes the use of [(18)F]FDG as a building block for the synthesis of (18)F-labeled peptides and proteins. [(18)F]FDG was converted into [(18)F]FDG-maleimidehexyloxime ([(18)F]FDG-MHO), a novel [(18)F]FDG-based prosthetic group for the mild and thiol group-specific (18)F labeling of peptides and proteins. The reaction was performed at 100 degrees C for 15 min in a sealed vial containing [(18)F]FDG and N-(6-aminoxy-hexyl)maleimide in 80% ethanol. [(18)F]FDG-MHO was obtained in 45-69% radiochemical yield (based upon [(18)F]FDG) after HPLC purification in a total synthesis time of 45 min. Chemoselecetive conjugation of [(18)F]FDG-MHO to thiol groups was investigated by the reaction with the tripeptide glutathione (GSH) and the single cysteine containing protein annexin A5 (anxA5). Radiolabeled annexin A5 ([(18)F]FDG-MHO-anxA5) was obtained in 43-58% radiochemical yield (based upon [(18)F]FDG-MHO, n = 6), and [(18)F]FDG-MHO-anxA5 was used for a pilot small animal PET study to assess in vivo biodistribution and kinetics in a HT-29 murine xenograft model.  相似文献   

6.
Current studies were undertaken to characterize the mechanism of short-chain fatty acid (SCFA) transport in isolated human proximal colonic basolateral membrane vesicles (BLMV) utilizing a rapid-filtration n-[(14)C]butyrate uptake technique. Human colonic tissues were obtained from mucosal scrapings from organ donor proximal colons. Our results, consistent with the existence of a HCO(3)(-)/SCFA exchanger in these membranes, are summarized as follows: 1) n-[(14)C]butyrate influx was significantly stimulated into the vesicles in the presence of an outwardly directed HCO(3)(-) and an inwardly directed pH gradient; 2) n-[(14)C]butyrate uptake was markedly inhibited (approximately 40%) by anion exchange inhibitor niflumic acid (1 mM), but SITS and DIDS (5 mM) had no effect; 3) structural analogs e.g., acetate and propionate, significantly inhibited uptake of HCO(3)(-) and pH-gradient-driven n-[(14)C]butyrate; 4) n-[(14)C]butyrate uptake was saturable with a K(m) for butyrate of 17.5 +/- 4.5 mM and a V(max) of 20.9 +/- 1.2 nmol x mg protein(-1) x 5 s(-1); 5) n-[(14)C]butyrate influx into the vesicles demonstrated a transstimulation phenomenon; and 6) intravesicular or extravesicular Cl(-) did not alter the anion-stimulated n-[(14)C]butyrate uptake. Our results indicate the presence of a carrier-mediated HCO(3)(-)/SCFA exchanger on the human colonic basolateral membrane, which appears to be distinct from the previously described anion exchangers in the membranes of colonic epithelia.  相似文献   

7.
Four 18F-labeled acetylcholinesterase (AChE) substrates, (S)-N-[18F]fluoroethyl-2-piperidinemethyl acetate (1), (R)-N-[18F]fluoroethyl-3-pyrrolidinyl acetate (2), N-[18F]fluoroethyl-4-piperidinyl acetate (3), and (R)-N-[18F]fluoroethyl-3-piperidinyl acetate (4), were evaluated for in vivo blood and brain metabolism in mice, brain pharmacokinetics in rats monkeys (M. nemistrina) using PET imaging. All 18F-labeled compounds were compared to N-[11C]methyl-4-piperidinyl propionate (PMP). Compound 1 was completely metabolized within 1 min in mouse blood and brain. This compound had relatively fast regional brain pharmacokinetics and poor discrimination between brain regions with different AChE concentration. Compound 4 showed relatively slower blood metabolism and slower pharmacokinetics than compound 1 but again poor discrimination between brain regions. Both compounds 1 and 4 showed different kinetic profiles than PMP in PET studies. Compound 3 had the slowest blood metabolism and slower pharmacokinetics than PMP. Compound 2 showed highly encouraging characteristics with an in vivo metabolism rate, primate brain uptake, and regional brain pharmacokinetics similar to [11C]PMP. The apparent hydrolysis rate constant k3 in primate cortex was very close to that of [11C]PMP. This compound has potential to be a good PET radiotracer for measuring brain AChE activity. The longer lifetime of 18F would permit longer imaging times and allows preparation of radiotracer batches for multiple patients and delivery of the tracer to other facilities, making the technique more widely available to clinical investigators.  相似文献   

8.
The radiosynthesis of 3-(4-[(18)F]fluorophenyl)-2-(4-methylsulfonylphenyl)-1H-indole [(18)F]-3 as potential PET radiotracer for functional characterization of cyclooxygenase-2 (COX-2) in vitro and in vivo is described. [(18)F]-3 was prepared by McMurry cyclization of a (18)F-labeled intermediate with low valent titanium and zinc via a two-step procedure in a remote controlled synthesizer unit including HPLC purification and solid phase extraction. In this way [(18)F]-3 was synthesized in 80 min synthesis time in 10% total decay corrected yield from [(18)F]fluoride in radiochemical purity >98% and a specific activity of 74-91 GBq/μmol (EOS). [(18)F]-3 was evaluated in vitro using pro-inflammatory stimulated THP-1 and COX-2 expressing tumor cell lines (FaDu, A2058, HT-29), where the radiotracer uptake was shown to be consistent with up regulated COX-2 expression. The stability of [(18)F]-3 was determined by incubation in rat whole blood and plasma in vitro and by metabolite analysis of arterial blood samples in vivo, showing with 75% of original compound after 60 min an acceptable high metabolic stability. However, no substantial tumor accumulation of [(18)F]-3 could be observed by dynamic small animal PET studies on HT-29 tumor-bearing mice in vivo. This may be due to the only moderate COX-1/COX-2 selectivity of 3 as demonstrated by both cellular and enzymatic cyclooxygenase inhibition assay in vitro. Nevertheless, the new approach first using McMurry cyclization in (18)F-chemistry gives access to (18)F-labeled diarylsubstituted heterocycles that hold promise as radiolabeled COX-2 inhibitors.  相似文献   

9.
As an effort in the development of more flexible (18)F-labeling chemistry, we report herein on the use of the Cu(I)-catalyzed Huisgen cycloaddition, also known as the "click reaction", to form (18)F-labeled 1,2,3-triazoles. Nucleophilic fluorination of 2-azidoethyl-4-toluenesulfonate followed by distillation provided 2-[(18)F]fluoroethylazide in 55% radiochemical yield (decay-corrected). 2-[(18)F]fluoroethylazide was reacted with a small library of terminal alkynes in the presence of excess Cu(2+)/ascorbate or copper powder. The most reactive alkyne, N-benzylpropynamide provided nearly quantitative incorporation of 2-[(18)F]fluoroethylazide after 15 min at ambient temperature, whereas the majority of the alkyne substrates provided excellent yields of the corresponding (18)F-labeled 1,2,3-triazoles following heating to 80 degrees C. Using the method described, a model peptide was obtained in 92.3 +/- 0.3% (n = 3) radiochemical yield (decay-corrected) after purification by semipreparative HPLC.  相似文献   

10.
The spirocyclic σ(1) receptor ligand 1 (1'-benzyl-3-(fluoromethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]) was prepared in four steps starting from methoxy derivative 5. Due to its high σ(1) affinity (K(i)=0.74nM) and selectivity against several other relevant targets, 1 was investigated as (18)F-labeled PET tracer and its biological properties were compared with those of homologous fluoroalkyl derivatives 2-4. The fluoromethyl derivative 1 was faster metabolized in vitro than homologs 2-4. In contrast to the radiosynthesis of [(18)F]2-4, the nucleophilic substitution of the tosylate 15 using the K[(18)F]F-K(222)-carbonate complex required heating to 150°C in DMSO to achieve high labeling efficiencies. Whereas radiometabolites of [(18)F]2-4 were not detected in vivo in the brain of mice, two radiometabolites of [(18)F]1 were found. Analysis of ex vivo autoradiography images provided rather low target-to-nontarget ratio for [(18)F]1 compared with [(18)F]2-4. [(18)F]1 showed a fast uptake in the brain, which decreased continuously over time. The brain-to-plasma ratio of the radiotracer [(18)F]1 was only exceeded by the fluoroethyl tracer [(18)F]2.  相似文献   

11.
[(11)C]Hemicholinium-15 ([(11)C]HC-15) and [(18)F]hemicholinium-15 ([(18)F]HC-15) have been synthesized as new potential PET tracers for the heart high-affinity choline uptake (HACU) system. [(11)C]HC-15 was prepared by N-[(11)C]methylation of the appropriate precursor, 4-methyl-2-phenyl-morpholin-2-ol, using [(11)C]CH(3)OTf in 55-70% radiochemical yield decay corrected to end of bombardment (EOB) and 2-3Ci/mumol specific activity at end of synthesis (EOS). [(18)F]HC-15 was prepared by N-[(18)F]fluoromethylation of the precursor using [(18)F]FCH(2)OTf in 20-30% radiochemical yield decay corrected to EOB and >1.0Ci/mumol specific activity at EOS. The biodistribution of both compounds was determined in rats at 20min post-intravenous injection, and the results show the heart region uptakes 1.32+/-0.75%ID/g in R-ventricle for [(11)C]HC-15 and 1.28+/-0.81%ID/g in L-ventricle for [(18)F]HC-15, respectively. The dynamic PET imaging studies of [(11)C]HC-15 in rats were acquired 60min post-intravenous injection of the tracer using the IndyPET-II scanner. For the blocking experiments, the rats were intravenously pretreated with 3.0mg/kg of unlabeled HC-15 prior to [(11)C]HC-15 injection. [(11)C]HC-15 rat heart PET studies show rapid heart uptake to give clear heart images. The rat heart PET blocking studies found no significant blocking effect. The dynamic PET studies in normal and ablated dogs were performed using Siemens PET scanner with [(13)N]NH(3), [(11)C]HC-15, and [(18)F]HC-15. PET studies in dogs of both [(11)C]HC-15 and [(18)F]HC-15 also show significant heart uptake and give images of the heart. However, there is no significant change in [(11)C]HC-15 L-ventricle uptake following radiofrequency ablation in the dog. These results suggest that the localization of HC-15 tracers in the heart is mediated by non-specific processes, and the visualization of HC-15 tracers on the heart is related to non-specific binding of HACU.  相似文献   

12.
This study was undertaken to develop radiopharmaceuticals for measuring in vivo cerebral redox states. Based on the oxidative conversion of dihydropyridine to pyridinium ion and the metabolic trapping principle, five N-[(14)C]methyl-3 or 3,5-substituted 1,4-dihydropyridines with different oxidation rates were designed, synthesized, and evaluated as a prototype of radiotracers for measuring in vivo cerebral redox states. When these tracers were injected into mice, they crossed the blood-brain barrier (BBB) and became trapped in the brain depending on their oxidation rates, while the corresponding oxidized forms hardly crossed the BBB. Furthermore, a significant increase in the radioactivity trapped in the brain was observed following injection of N-[(14)C]methyl-3-acetyl-1,4-dihydropyridine to mice pretreated with diethylmaleate that depletes glutathione in the brain. These findings suggested that an approach based on the oxidative conversion of dihydropyridine to the pyridinium ion and the metabolic trapping principle would be useful for measuring in vivo cerebral redox states.  相似文献   

13.
1. The N-(2-hydroxyethyl)alanine esterified to phosphatidic acid in anaerobic ciliate rumen protozoa has the l configuration. 2. Labelling experiments with Entodinium caudatum cultures using [(32)P]P(i) [2-(14)C]ethanolamine and (32)P- and (14)C-labelled phosphatidylethanolamine show that phosphatidylethanolamine is the direct lipid precursor of the N-(2-hydroxyethyl)alanine-containing phospholipid. 3. Labelling experiments with [(14)C]starch, [(14)C]lactate and [(14)C]pyruvate with E. caudatum cultures indicate that a three-carbon glycolytic intermediate is probably the precursor of the N-(1-carboxyethyl) grouping which substitutes on the amino group of phosphatidylethanolamine. 4. [(32)P]phosphatidylethanolamine is catabolized by E. caudatum forming initially glycerylphosphorylethanolamine and subsequently glycerophosphate and P(i). A little phosphorylethanolamine formed may possibly arise from bacterial enzymes ingested by the protozoa.  相似文献   

14.
N-(4-Methoxybenzyl)-N'-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418), a highly selective inhibitor of glycogen synthase kinase-3beta (GSK-3beta), was radiolabelled with carbon-11 (half-life=20.4min) for cerebral positron emission tomography (PET) studies. Reaction of desmethyl AR-A014418 with [(11)C]CH(3)I produced [(11)C]AR-A014418 in 17% decay-corrected radiochemical yield, based on [(11)C]CO(2), with 3230mCi/micromol specific activity after a 30min synthesis time. The desmethyl precursor of AR-A014418 was synthesized in 23% yield by a novel one-pot reaction of 2-amino-5-nitrothiazole with in situ generated TMS-protected 4-hydroxybenzylisocyanate, following deprotection with acid. Ex vivo biodistribution studies were conducted after [(11)C]AR-A014418 was administered via tail vein injection into Sprague-Dawley rats. Very low levels of radioactivity were found in all brain regions (0.08% injected dose/gram of tissue) at 5 and 30min post-injection, uncorrected for vascular compartment. Considering the extremely poor brain penetration of [(11)C]AR-A014418 this compound cannot be used to study GSK-3beta in cerebral PET studies. Furthermore, the specific pharmacological mechanism(s) of antidepressant-like activity attributed to AR-A014418 should be investigated.  相似文献   

15.
N-[(18)F]Fluoroethyl-4-piperidyl acetate ([(18)F]FEtP4A) was synthesized and evaluated as a PET tracer for imaging brain acetylcholinesterase (AchE) in vivo. [(18)F]FEtP4A was previously prepared by reacting 4-piperidyl acetate (P4A) with 2-[(18)F]fluoroethyl bromide ([(18)F]FEtBr) at 130 degrees C for 30 min in 37% radiochemical yield using an automated synthetic system. In this work, [(18)F]FEtP4A was synthesized by reacting P4A with 2-[(18)F]fluoroethyl iodide ([(18)F]FEtI) or 2-[(18)F]fluoroethyl triflate ([(18)F]FEtOTf in improved radiochemical yields, compared with [(18)F]FEtBr under the corresponding condition. Ex vivo autoradiogram of rat brain and PET summation image of monkey brain after iv injection of [(18)F]FEtP4A displayed a high radioactivity in the striatum, a region with the highest AchE activity in the brain. Moreover, the distribution pattern of (18)F radioactivity was consistent with that of AchE in the brain: striatum>frontal cortex>cerebellum. In the rat and monkey plasma, two radioactive metabolites were detected. However, their presence might not preclude the imaging studies for AchE in the brain, because they were too hydrophilic to pass the blood-brain barrier and to enter the brain. In the rat brain, only [(18)F]fluoroethyl-4-piperidinol ([(18)F]FEtP4OH) was detected at 30 min postinjection. The hydrolytic [(18)F]FEtP4OH displayed a slow washout and a long retention in the monkey brain until the PET experiment (120 min). Although [(18)F]FEtP4A is a potential PET tracer for imaging AchE in vivo, its lower hydrolytic rate and lower specificity for AchE than those of [(11)C]MP4A may limit its usefulness for the quantitative measurement for AchE in the primate brain.  相似文献   

16.
[(18)F]Fluorothiols are a new generation of peptide labeling reagents. This article describes the preparation of suitable methanesulfonyl precursors and their use in no-carrier-added radiosyntheses of (18)F-fluorothiols. The preparations of (3-[(18)F]fluoropropylsulfanyl)triphenylmethane, (2-[2-[2-(2-[(18)F]fluoroethoxy)ethoxy]ethoxy]ethylsulfanyl)triphenylmethane, and 4-[(18)F]fluoromethyl-N-[2-triphenylmethanesulfanyl)ethyl]benzamide starting from the corresponding methanesulfonyl precursors were investigated. Following the removal of the triphenylmethane protecting group, the (18)F-fluorothiols were reacted with the N-terminal chloroacetylated model peptide ClCH(2)C(O)-LysGlyPheGlyLys. The corresponding radiochemical yields of (18)F-labeled isolated model peptide, decay-corrected to (18)F fluoride, were 10%, 32%, and 1%, respectively. These results indicate a considerable potential of (18)F-fluorothiols for the chemoselective labeling of peptides as tracers for positron emission tomography (PET).  相似文献   

17.
Butyrate and the other short-chain fatty acids (SCFAs) are the most abundant anions in the colonic lumen. Also, butyrate is the preferred energy source for colonocytes and has been shown to regulate colonic electrolyte and fluid absorption. Previous studies from our group have demonstrated that the HCO(3)(-)/SCFA(-) anion exchange process is one of the major mechanisms of butyrate transport across the purified human colonic apical membrane vesicles and the apical membrane of human colonic adenocarcinoma cell line Caco-2 and have suggested that it is mainly mediated via monocarboxylate transporter-1 (MCT-1) isoform. However, little is known regarding the regulation of SCFA transport by various hormones and signal transduction pathways. Therefore, the present studies were undertaken to examine whether hydrocortisone and phorbol 12-myristate 13-acetate (PMA) are involved in a possible regulation of the butyrate/anion exchange process in Caco-2 cells. The butyrate/anion exchange process was assessed by measuring a pH-driven [(14)C]butyrate uptake in Caco-2 cells. Our results demonstrated that 24-h incubation with PMA (1 microM) significantly increased [(14)C]butyrate uptake compared with incubation with 4alphaPMA (inactive form). In contrast, incubation with hydrocortisone had no significant effect on butyrate uptake in Caco-2 cells compared with vehicle (ethanol) alone. Induction of butyrate uptake by PMA appeared to be via an increase in the maximum velocity (V(max)) of the transport process with no significant changes in the K(m) of the transporter for butyrate. Parallel to the increase in the V(max) of [(14)C]butyrate uptake, the MCT-1 protein level was also increased in response to PMA incubation. Our studies demonstrated that the butyrate/anion exchange was increased in response to PMA treatment along with the induction in the level of MCT-1 expression in Caco-2 cells.  相似文献   

18.
N-(2-{3-[3,5-Bis(trifluoromethyl)]phenylureido}ethyl)glycyrrhetinamide (2), an ureido-substituted derivative of glycyrrhetinic acid (1), has been reported to display potent inhibitory activity for proteasome and kinase, which are overexpressed in tumors. In this study, we labeled this unsymmetrical urea 2 using [(11)C]phosgene ([(11)C]COCl(2)) as a labeling agent with the expectation that [(11)C]2 could become a positron emission tomography ligand for the imaging of proteasome and kinase in tumors. The strategy for the radiosynthesis of [(11)C]2 was to react hydrochloride of 3,5-bis(trifluoromethyl)aniline (4·HCl) with [(11)C]COCl(2) to possibly give isocyanate [(11)C]6, followed by the reaction of [(11)C]6 with N-(2-aminoethyl)glycyrrhetinamide (3).  相似文献   

19.
Transport and metabolism of dicarboxylates may be important in the glial-neuronal metabolic interplay. Further, exogenous dicarboxylates have been suggested as cerebral energy substrates. After intrastriatal injection of [(14) C]fumarate or [(14) C]malate, glutamine attained a specific activity 4.1 and 2.6 times higher than that of glutamate, respectively, indicating predominantly glial uptake of these four-carbon dicarboxylates. In contrast, the three-carbon dicarboxylate [(14) C]malonate gave a specific activity in glutamate which was approximately five times higher than that of glutamine, indicating neuronal uptake of malonate. Therefore, neurones and glia take up different types of dicarboxylates, probably by different transport mechanisms. Labelling of alanine from [(14) C]fumarate and [(14) C]malate demonstrated extensive malate decarboxylation, presumably in glia. Intravenous injection of 75 micromol [U-(13) C]fumarate rapidly led to high concentrations of [U-(13) C]fumarate and [U-(13) C]malate in serum, but neither substrate labelled cerebral metabolites as determined by (13) C NMR spectroscopy. Only after conversion of [U-(13) C]fumarate into serum glucose was there (13) C-labelling of cerebral metabolites, and only at <10% of that obtained with 75 micromol [3-(13) C]lactate or [2-(13) C]acetate. These findings suggest a very low transport capacity for four-carbon dicarboxylates across the blood-brain barrier and rule out a role for exogenous fumarate as a cerebral energy substrate.  相似文献   

20.
The discovery of the CNS-penetrant and selective alpha(2C) adrenergic receptor antagonist N-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-[1,4]diazepan-1-yl]-ethyl}-2-phenoxy-nicotinamide, 13 is described. Structure-activity studies demonstrate the structural requirements for binding affinity, functional activity, and selectivity over other alpha(2)-AR subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号