首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High temperature tolerance experiments performed on Pocillopora damicornis, a major reef-building coral in the tropical eastern Pacific, resulted in loss of zooxanthellae, histopathological abnormalities, and mortality similar to that observed during the severe 1982–83 El Niño-Southern Oscillation (ENSO) event. Coral vitality declined significantly at 30–32°C during a 10-week period, but remained high at normal temperatures (26–28°C). Laboratory time courses to coral morbidity and death were similar to those observed in the field. Experimental high temperatures had a greater negative effect on corals from the Gulf of Panama, which experiences seasonally cool upwellings, than on corals from the nonupwelling Gulf of Chiriqui. The condition of obligate symbiotic crustaceans (Trapezia, Alpheus) associated with experimental corals declined with their host's declining condition. All Gulf of Panama corals subjected to 32°C were dead after 5 weeks, and all of their associated crustacean symbionts were dead after 9 weeks. Gulf of Chiriqui corals at 30°C survived for 9 weeks and 42% of their crustacean symbionts were still alive after 10 weeks. Coral mortality in the Gulf of Panama was significantly higher (68.5%) after El Niño warming than after subsequent episodes of unusually intense cool upwellings (10.4%). Low temperature stress (cool currents and upwelling) has been generally suggested as the critical limiting condition that prevents extensive coral reef development in the eastern Pacific. Our results suggest that infrequent but severe ENSO sea warming events also may limit reef development in this region.  相似文献   

2.
3.
Since the building of coral reefs results from the association of corals and zooxanthellae, their intracellular algal symbionts, genetic markers for both organisms are essential for studying the contribution of their respective dispersal to the resilience of endangered reef ecosystems. Very few microsatellites have been obtained in corals thus far. Here we report the successful cloning of six polymorphic microsatellites (allele number: 5–15) from Pocillopora verrucosa, P. meandrina and P. damicornis. Four of them amplified coral, and two amplified zooxanthella DNA.  相似文献   

4.
Understanding the potential for coral adaptation to warming seas is complicated by interactions between symbiotic partners that define stress responses and the difficulties of tracking selection in natural populations. To overcome these challenges, we characterized the contribution of both animal host and symbiotic algae to thermal tolerance in corals that have already experienced considerable warming on par with end‐of‐century projections for most coral reefs. Thermal responses in Platygyra daedalea corals from the hot Persian Gulf where summer temperatures reach 36°C were compared with conspecifics from the milder Sea of Oman. Persian Gulf corals had higher rates of survival at elevated temperatures (33 and 36°C) in both the nonsymbiotic larval stage (32–49% higher) and the symbiotic adult life stage (51% higher). Additionally, Persian Gulf hosts had fixed greater potential to mitigate oxidative stress (31–49% higher) and their Symbiodinium partners had better retention of photosynthetic performance under elevated temperature (up to 161% higher). Superior thermal tolerance of Persian Gulf vs. Sea of Oman corals was maintained after 6‐month acclimatization to a common ambient environment and was underpinned by genetic divergence in both the coral host and symbiotic algae. In P. daedalea host samples, genomewide SNP variation clustered into two discrete groups corresponding with Persian Gulf and Sea of Oman sites. Symbiodinium within host tissues predominantly belonged to ITS2 rDNA type C3 in the Persian Gulf and type D1a in the Sea of Oman contradicting patterns of Symbiodinium thermal tolerance from other regions. Our findings provide evidence that genetic adaptation of both host and Symbiodinium has enabled corals to cope with extreme temperatures in the Persian Gulf. Thus, the persistence of coral populations under continued warming will likely be determined by evolutionary rates in both, rather than single, symbiotic partners.  相似文献   

5.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25°C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29°C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28°C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

6.
To investigate bleaching mechanisms in coral-zooxanthella symbiotic systems, it is important to study the cellular- or tissue-level responses of corals to stress. We established an experimental system to study the stress responses of coral cells using coral cell aggregates. Dissociated coral cells aggregate to form spherical bodies, which rotate by ciliary movement. These spherical bodies (tissue balls) stop rotating and disintegrate when exposed to a thermal stress. Tissue balls prepared from dissociated cells of Fungia sp. and Pavona divaricata were exposed to either elevated temperature (31 °C, with 25 °C as the control) or elevated temperature in the presence of exogenous antioxidants (ascorbic acid and catalase, or mannitol). The survival curves of tissue balls were markedly different between 31 and 25 °C. At 31 °C, most tissue balls disintegrated within 24 h, whereas at 25 °C, most tissue balls survived for more than 24 h. There was a negative correlation between survival time and the zooxanthella density of tissue balls at 31 °C, but no significant relationship was found at 25 °C. Antioxidants extended the survival time of tissue balls at high temperature, suggesting that zooxanthellae produce reactive oxygen species under stress. These results indicate that zooxanthellae produce harmful substances and damage coral cells under high-temperature stress. Tissue balls provide a good experimental system with which to study the effects of stress and various chemical reagents on corals cells.  相似文献   

7.
Bleaching is a worldwide phenomenon affecting coral reefs. During elevated temperature and light conditions (bleaching), expelled zooxanthellae show distinct patterns in photosynthetic health. An innovative new device was used to collect individual expelled zooxanthellae, when a coral was exposed to bleaching conditions. This has provided new insight into the photosynthetic condition and abundance of expelled zooxanthellae. It has been assumed that expelled zooxanthellae were dead or moribund; however, we have found individual cells can have healthy effective quantum yields (?PSII) >0.65 after 8 h of bleaching conditions (500 μmol photons m−2 s−1, 33 °C). The population of expelled zooxanthellae from Cyphastrea serailia and Pocillopora damicornis showed distinct patterns in the frequency distribution of ?PSII over time and between locations (sun versus shade) within a colony. During the first 4 h of exposure to bleaching conditions, only 5% of expelled individual cells from P. damicornis were photosynthetically inactive (?PSII<0.05), whereas for C. serailia, this was 30%. The overall photosynthetic health of expelled zooxanthellae from C. serailia was better than P. damicornis (0.53±0.13 and 0.38±0.13 after 8 h, respectively). This was generally reflected by the in hospite measurement of the coral, yet, the in hospite cells always had a higher ?PSII than expelled cells, suggesting that host tissue provided added photoprotection for the zooxanthellae.  相似文献   

8.
This study focused on the association between corals of the genus Pocillopora, a major constituent of Pacific reefs, and their zooxanthellae. Samples of P. meandrina, P. verrucosa, P. damicornis, P. eydouxi, P. ligulata and P. molokensis were collected from French Polynesia, Tonga, Okinawa and Hawaii. Symbiodinium diversity was explored by looking at the 28S and ITS1 regions of the ribosomal DNA. Most zooxanthellae were found to belong to clade C, sub-clade C1, with little differentiation between populations. Interestingly, individuals of P. damicornis harbored sub-clade C1, clade D and clade A, depending on location. The symbiotic association of P. damicornis with its zooxanthellae may be somewhat more flexible than those of other Pocillopora species.  相似文献   

9.
Bleaching of reef corals is a phenomenon linked to temperature stress which involves loss of the symbiotic algae of the coral, which are known as zooxanthellae, and/or loss of algal pigments. The photosynthetic efficiency of zooxanthellae within the corals Montastrea annularis, Agaricia lamarki, Agaricia agaricites and Siderastrea radians was examined by pulse-amplitude modulation fluorometry (PAM) during exposure to elevated temperatures (30–36°C). Zooxanthellae within M. annularis and A. lamarki were found to be more sensitive to elevated temperature, virtually complete disruption of photosynthesis being noted during exposure to temperatures of 32 and 34°C. The photosynthetic efficiency of zooxanthellae within S. radians and A. agaricites decreased to a lesser extent. Differences in the loss of algal cells on an aerial basis and in the cellular chlorophyll concentration were also found between these species. By combining the non-invasive PAM technique with whole-cell fluorescence of freshly isolated zooxanthellae, we have identified fundamental differences in the physiology of the symbionts within different species of coral. Zooxanthellae within M. annularis appear to be more susceptible to heat-induced damage at or near the reaction centre of Photosystem II, while zooxanthellae living in S. radians remain capable of dissipating excess excitation energy through non-photochemical pathways, thereby protecting the photosystem from damage during heat exposure.  相似文献   

10.
In this paper, I review data on the magnitude and extent of reef coral bleaching events and consider modern hypotheses on the mechanisms of this natural phenomenon and experimental data lying at their basis. Four possible mechanisms of color loss by hermatypic corals have been confirmed experimentally: bacterial infection, change of zooxanthellae type in the polyps to improve the heat resistance of the photosynthetic function of coral to elevated seawater temperature, intoxication of zooxanthellae by animal metabolic wastes at high temperature and light levels, and thermal and photodestruction of the animal and algal cells. The heating effect of photosynthetic active radiation on the zooxanthellar cells in coral polyps was verified theoretically. The calculations showed that in the natural environment, the additional light-induced heating of zooxanthellae is not above 0.01°C and that it cannot cause disruption of the animal and zooxanthellae symbiosis.  相似文献   

11.
Scleractinian corals are known to suffer bleaching or loss of their symbiotic zooxanthellae under conditions of elevated seawater temperatures often associated with climate change (i.e. global warming). This can occur on a massive scale and has caused the decimation of reefs on a global basis. During the bleaching process, the expelled zooxanthellae suffer cell damage from heat stress, characterized by irreversible ultrastructural and physiological changes which are symptomatic of cell degeneration and death (called apoptosis) or necrosis. A question that remains unanswered, however, is whether the coral hosts themselves are sensitive to seawater temperatures, and, if so, to what degree? In a controlled experiment, we exposed corals Acropora hyacinthus (Dana, 1846) and Porites solida (Forskål, 1775) with their symbiotic zooxanthellae (Symbiodinium sp.) to temperatures of 28 °C (control), 30 °C, 32 °C, and 34 °C for 48 h and also to 36 °C for 12 h. We assessed coral and zooxanthellar cells in-situ for symptoms of apoptosis and necrosis using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). We found that the coral host cells in-situ exhibited, for the most part, little or no mortality from increased seawater temperatures. Damage to the coral hosts only occurred under conditions of prolonged exposure (≥ 12 h) at high temperatures (34 °C), or at exceptionally high temperatures (e.g. 36 °C). On the other hand, we found high levels of apoptosis and necrosis in the zooxanthellae in-situ under all treatment conditions of elevated seawater temperatures. We found that during bleaching, the host cells are not experiencing much mortality - but the zooxanthellae, even while still within the host, are. The host corals exhibit exaptation to accommodate temperatures as high as ≥ 34 °C. Temperature stress within these highly specific and coevolved symbiotic systems is derived not from host sensitivity to temperature, but from the symbiont's sensitivity and the loss of the coral's endosymbiotic partners.  相似文献   

12.
A series of cold fronts passing over the western Arabian Gulf from December 1988 to March 1989 produced the longest period of sustained low water temperatures ever recorded in a coral reef area. Sea water temperatures recorded on two reefs during this period provide new estimates of lower thermal limits for reef coral survival. Severe mortality of the corals Acropora pharaonis and Platygyra daedalea occurred at the northern site where minimum temperatures fell below 11.5°C on four consecutive days and mean daily temperatures were 13°C or less for more than 30 days. However, Porites compressa, the principal reef-former in this area, and various faviid corals initially showed only sub-lethal effects and appeared normal after six months. Corals were not damaged at the southern site, where minimum water temperature fell below 12.5°C for two consecutive days, but mean temperatures were 14°C or less for only 5 non-consecutive days.  相似文献   

13.
The disastrous effects of the intense 1982–83 El Niño-SouthernOscillation (ENSO) bring new insight into the long-term developmentof eastern Pacific coral reefs. The 1988–83 ENSO sea surfacewarming event caused extensive reef coral bleaching (loss ofsymbiotic zooxanthellae), resulting in up to 70–95% coralmortality on reefs in Costa Rica, Panama, Colombia and Ecuador.In the Galapagos Islands (Ecuador), most coral reefs experienced>95% coral mortality. Also, several coral species experiencedextreme reductions in population size, and local and regionalextinctions. The El Niño event spawned secondary disturbances,such as increased predation and bioerosion, that continue toimpact reef-building corals. The death of Pocillopora colonieswith their crustacean guards eliminated coral barriers now allowingthe corallivore Acanthaster planci access to formerly protectedcoral prey. Sea urchins and other organisms eroded disturbedcorals at rates that exceed carbonate production, potentiallyresulting in the elimination of existing reef buildups. In otherreefbuilding regions following extensive, catastrophic coralmortality, rapid recovery often occurs through the growth ofsurviving corals, recruitment of new corals from nearby sourcepopulations, and survival of consolidated reef surfaces. Inthe eastern Pacific, however, the return of upwelling conditionsand the survival of coral predators and bioeroders hamper coralreef recovery by reducing recruitment success and eroding coralreef substrates. Thus, coral reef growth that occurs betweendisturbance events is not conserved. Repeated El Niñodisturbances, which have occurred throughout the recent geologichistory of the eastern Pacific, prevent coral communities fromincreasing in diversity and limit the development and persistenceof significant reef features. The poor development of easternPacific coral reefs throughout Holocene and perhaps much ofPleistocene time may result from recurrent thermal disturbancesof the intensity of the 1982–83 El Niño event.  相似文献   

14.
The branching coral species Pocillopora damicornis (Linnaeus) and the massive coral species Porites lobata Dana were exposed for 30 days to different temperatures and nitrate concentrations to study the response of the coral-zooxanthella symbiosis. Results suggest that the effect of nitrate enrichment on the polyp-zooxanthella symbiosis varies according to the coral morphology. After the experimental period only 30% of P. damicornis colonies remained healthy, in contrast to 90% of P. lobata. The branching P. damicornis was significantly affected by the addition of nitrate, whereas P. lobata was significantly influenced by water temperature. The two species showed enhanced zooxanthella volume, and chlorophyll contents per cell under high nitrate concentrations. The reduced zooxanthellae density in both species indicated a detrimental influence of the interaction of high nitrate and high temperature. Tissue soluble proteins in P. lobata were significantly reduced by elevated temperature. Results showed that tissue soluble proteins and chlorophylls in P. lobata were from two- to three-fold higher than in P. damicornis. The number of zooxanthellae in P. lobata was double that of P. damicornis. Therefore, we suggest that the slow-growing species P. lobata is better able to cope with changing environmental conditions than the fast-growing coral P. damicornis.  相似文献   

15.
The symbiotic association between corals and zooxanthellae has been a major contributing factor in the success of reef-building corals. Most of these endocellular microalgal symbionts belong to the dinoflagellate genus Symbiodinium. However, considerable genetic diversity was revealed within this taxon, as is evident in the several clades of Symbiodinium found in association with hermatypic corals all over the world. The coral reefs of Eilat (Aqaba), where winter temperature minima of 21 °C are close to threshold values that prevent reef development, are among the northernmost reefs in the world. Furthermore, due to the circulation patterns of the Gulf, the extremely high evaporation, and lack of any riverine inputs, the Gulf's waters are highly saline (40.5‰). In spite of the extreme location, a high diversity of coral species has been reported in this area. In this study, using PCR, we specifically amplified zooxanthellae 18S ribosomal DNA from symbionts of 11 coral species, and analyzed it with respect to RFLP and DNA sequence.Of the several clades described from the same coral hosts in other localities, only A and C were found in the present study. Symbiodinium populations in the host examined from Eilat were different relative to other parts of the world. This distribution is discussed in relation to reproduction strategy: broadcasting versus brooding. Based on our results, we suggest that clade A is transferred through a closed system. As mass bleaching in the Gulf has never been observed, we suggest that the adaptive mechanisms presumably favoring clade diversity were not yet significant in our relatively cool area.  相似文献   

16.
17.
《农业工程》2014,34(3):165-169
Mutualistic relationship between coral polyps and their symbiotic zooxanthellae living within their tissues are the most essential features of a coral reef ecosystem. In this symbiotic system, the coral polyps provide a protected habitat, carbon dioxide and nutrients needed for photosynthesis to zooxanthellae; in turn, the symbiotic zooxanthellae provide food as products of photosynthesis to coral polyps. The Photosynthesis of zooxanthellae is therefore an important process of this symbiotic system as well as the development of the whole coral reef ecosystem. The recent application of chlorophyll fluorescence technique in the study of the zooxanthellae’s photosynthesis has greatly improved our understanding on the micro-ecology of corals and the symbiotic zooxanthellae. This paper summarizes the recent progress as the following aspects: (1) The ecological characteristics of the photosynthesis of symbiotic zooxanthellae, such as the diurnal and seasonal changes in the photochemical efficiency of the zooxanthellae, and the relationship between zooxanthellae photosynthesis and the world-wide coral bleaching. (2) The mechanism of corals acclimating to the changes of irradiance via spatial and temporal photoacclimations, including the corals’ photobiology; zooxanthella size, pigmentation, location and clade, and the relationship between light extremes and the corals’ metabolism and calcification. (3) The understanding of the response of zooxanthellae to various environmental stresses, such as long-term changes in the chlorophyll fluorescence of bleached and recovering corals; the tolerance of corals to thermal bleaching; the changes to photosystem II of symbiotic zooxanthellae after heat stress and bleaching. Due to the above findings, the chlorophyll fluorescence values of those coral species sensitive to environmental changes have been utilized as indicators of coral health as well as the status of coral reef ecosystems. In summary, the chlorophyll fluorescence technique has great potential in the understanding, monitoring, protecting and managing coral reefs.  相似文献   

18.
Reef‐building corals are at risk of extinction from ocean warming. While some corals can enhance their thermal limits by associating with dinoflagellate photosymbionts of superior stress tolerance, the extent to which symbiont communities will reorganize under increased warming pressure remains unclear. Here we show that corals in the hottest reefs in the world in the Persian Gulf maintain associations with the same symbionts across 1.5 years despite extreme seasonal warming and acute heat stress (≥35°C). Persian Gulf corals predominantly associated with Cladocopium (clade C) and most also hosted Symbiodinium (clade A) and/or Durusdinium (clade D). This is in contrast to the neighbouring and milder Oman Sea, where corals associated with Durusdinium and only a minority hosted background levels of Cladocopium. During acute heat stress, the higher prevalence of Symbiodinium and Durusdinium in bleached versus nonbleached Persian Gulf corals indicates that genotypes of these background genera did not confer bleaching resistance. Within symbiont genera, the majority of ITS2 rDNA type profiles were unique to their respective coral species, confirming the existence of host‐specific symbiont lineages. Notably, further differentiation among Persian Gulf sites demonstrates that symbiont populations are either isolated or specialized over tens to hundreds of kilometres. Thermal tolerance across coral species was associated with the prevalence of a single ITS2 intragenomic sequence variant (C3gulf), definitive of the Cladocopium thermophilum group. The abundance of C3gulf was highest in bleaching‐resistant corals and at warmer sites, potentially indicating a specific symbiont genotype (or set of genotypes) that may play a role in thermal tolerance that warrants further investigation. Together, our findings indicate that co‐evolution of host–Symbiodiniaceae partnerships favours fidelity rather than flexibility in extreme environments and under future warming.  相似文献   

19.
The bleaching of corals in response to increases in temperature has resulted in significant coral reef degradation in many tropical marine ecosystems. This bleaching has frequently been attributed to photoinhibition of photosynthetic electron transport and the consequent photodamage to photosystem II (PSII) and the production of damaging reactive oxygen species (ROS) in the zooxanthellae (Symbiodinium spp.). However, these events may be because of perturbations of other processes occurring within the zooxanthellae or the host cells, and consequently constitute only secondary responses to temperature increase. The processes involved with the onset of photoinhibition of electron transport, photodamage to PSII and pigment bleaching in coral zooxanthellae are reviewed. Consideration is given to how increases in temperature might lead to perturbations of metabolic processes in the zooxanthellae and/or their host cells, which could trigger events leading to bleaching. It is concluded that production of ROS by the thylakoid photosynthetic apparatus in the zooxanthellae plays a major role in the onset of bleaching resulting from photoinhibition of photosynthesis, although it is not clear which particular ROS are involved. It is suggested that hydrogen peroxide generated in the zooxanthellae may have a signalling role in triggering the mechanisms that result in expulsion of zooxanthellae from corals.  相似文献   

20.
Occurrence and distribution of stony corals (Milleporina and Scleractinia) in the Gulf of Cariaco were investigated quantitatively using skin-diving methods. Unusual temperature conditions due to cold upwelling limit coral growth to a depth of 15 m. A clear vertical zonation of species was observed, with five zones, in order of increasing depth, dominated by Porites porites, Millepora complanata, Siderastrea siderea, Dichocoenia stokesi, and Solenastrea hyades. Twenty-one species of scleractinians and three species of hydrocorals have so far been found in the gulf. Of the total area covered by corals, over 50% is inhabited by Siderastrea siderea, Millepora spp., and Porites porites. A horizontal zonation of the littoral was established based on species composition and density of the coral cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号