共查询到20条相似文献,搜索用时 0 毫秒
1.
Cells of the trophoblast lineage make up the epithelial compartment of the placenta, and their rapid development is essential for the establishment and maintenance of pregnancy. A diverse array of specialized trophoblast subtypes form throughout gestation and are responsible for mediating implantation, as well as promotion of blood to the implantation site, changes in maternal physiology, and nutrient and gas exchange between the fetal and maternal blood supplies. Within the last decade, targeted mutations in mice and the study of trophoblast stem cells in vitro have contributed greatly to our understanding of trophoblast lineage development. Here, we review recent insights into the molecular pathways regulating trophoblast lineage segregation, stem cell maintenance, and subtype differentiation. 相似文献
2.
3.
4.
Tae Bon Koo Min-Su Han Yamashita Tadashi Won Joon Seong Je-Yong Choi 《BMB reports》2013,46(10):507-512
Invasion of trophoblasts into maternal uterine tissue is essential for establishing mature feto-maternal circulation. The trophoblast invasion associated with placentation is similar to tumor invasion. In this study, we investigated the role of KAI1, an anti-metastasis factor, at the maternal-fetal interface during placentation. Mouse embryos were obtained from gestational days 5.5 (E5.5) to E13.5. Immunohistochemical analysis revealed that KAI1 was expressed on decidual cells around the track made when a fertilized ovum invaded the endometrium, at days E5.5 and E7.5, and on trophoblast giant cells, along the central maternal artery of the placenta at E9.5. KAI1 in trophoblast giant cells was increased at E11.5, and then decreased at E13.5. Furthermore, KAI1 was upregulated during the forskolinmediated trophoblastic differentiation of BeWo cells. Collectively, these results indicate that KAI1 is differentially expressed in decidual cells and trophoblasts at the maternal-fetal interface, suggesting that KAI1 prevents trophoblast invasion during placentation. [BMB Reports 2013; 46(10): 507-512] 相似文献
5.
Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta 总被引:5,自引:0,他引:5
The purpose of this investigation was to identify the cellular origin of placental lactogen-I (PL-I) expression in the mouse placenta and to cytologically define the transition from PL-I to PL-II expression during gestation. PL-I mRNA expression was assessed by in situ hybridization, and expression of PL-I and PL-II protein was determined by immunocytochemical analysis. PL-I mRNA and protein were localized to trophoblast giant cells. Trophoblast giant cells ceased producing PL-I at midgestation and began expressing PL-II. PL-I immunoreactivity was present in trophoblast giant cells on Days 9 and 10 of gestation but was not detectable in trophoblast giant cells on Day 11 of gestation. Immunoreactive PL-II-producing giant cells were detected first on Day 10 of gestation, continuing on Day 11 of gestation. Expression of PL-I and PL-II signals a significant functional transition in trophoblast giant cells of the developing mouse placenta. 相似文献
6.
7.
Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta 总被引:17,自引:0,他引:17
Adamson SL Lu Y Whiteley KJ Holmyard D Hemberger M Pfarrer C Cross JC 《Developmental biology》2002,250(2):358-373
Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by placental trophoblast cells rather than endothelial cells. Molecular genetic studies in mice aimed at identifying potential regulators of these processes have been hampered by lack of understanding of the anatomy of the vascular spaces in the placenta and the general nature of maternal-fetal vascular interactions. To address this problem, we examined the anatomy of the mouse placenta by preparing plastic vascular casts and serial histological sections of implantation sites from embryonic day (E) 10.5 to term. We found that each radial artery carrying maternal blood into the uterus branched into 5-10 dilated spiral arteries located within the metrial triangle, populated by uterine natural killer (uNK) cells, and the decidua basalis. The endothelial-lined spiral arteries converged together at the trophoblast giant cell layer and emptied into a few straight, trophoblast-lined "canals" that carried maternal blood to the base of the placenta. Maternal blood then percolated back through the intervillous space of the labyrinth toward the maternal side of the placenta in a direction that is countercurrent to the direction of the fetal capillary blood flow. Trophoblast cells were found invading the uterus in two patterns. Large cells that expressed the trophoblast giant cell-specific gene Plf (encoding Proliferin) invaded during the early postimplantation period in a pattern tightly associated with spiral arteries. These peri/endovascular trophoblast were detected only approximately 150-300 microm upstream of the main giant cell layer. A second type of widespread interstitial invasion in the decidua basalis by glycogen trophoblast cells was detected after E12.5. These cells did not express Plf, but rather expressed the spongiotrophoblast-specific gene Tpbp. Dilation of the spiral arteries was obvious between E10.5 and E14.5 and was associated with a lack of elastic lamina and smooth muscle cells. These features were apparent even in the metrial triangle, a site far away from the invading trophoblast cells. By contrast, the transition from endothelium-lined artery to trophoblast-lined (hemochorial) blood space was associated with trophoblast giant cells. Moreover, the shaping of the maternal blood spaces within the labyrinth was dependent on chorioallantoic morphogenesis and therefore disrupted in Gcm1 mutants. These studies provide important insights into how the fetoplacental unit interacts with the maternal intrauterine vascular system during pregnancy in mice. 相似文献
8.
Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate 总被引:1,自引:0,他引:1
Prolonged maintenance of trophoblast stem (TS) cells requires fibroblast growth factor (FGF) 4 and embryonic fibroblast feeder cells or feeder cell-conditioned medium. Previous studies have shown that TGF-β and Activin are sufficient to replace embryonic fibroblast-conditioned medium. Nodal, a member of the TGF-β superfamily, is also known to be important in vivo for the maintenance of TS cells in the developing placenta. Our current studies indicate that TS cells do not express the Nodal co-receptor, Cripto, and do not respond directly to active Nodal in culture. Conversely, Activin subunits and their receptors are expressed in the placenta and TS cell cultures, with Activin predominantly expressed by trophoblast giant cells (TGCs). Differentiation of TS cells in the presence of TGC-conditioned medium or exogenous Activin results in a reduction in the expression of TGC markers. In line with TGC-produced Activin representing the active component in TGC-conditioned medium, this differentiation-inhibiting effect can be reversed by the addition of follistatin. Additional experiments in which TS cells were differentiated in the presence or absence of exogenous Activin or TGF-β show that Activin but not TGF-β results in the maintenance of expression of TS cell markers, prolongs the expression of syncytiotrophoblast markers, and significantly delays the expression of spongiotrophoblast and TGC markers. These results suggest that Activin rather than TGF-β (or Nodal) acts directly on TS cells influencing both TS cell maintenance and cell fate, depending on whether the cells are also exposed to FGF4. 相似文献
9.
10.
The placenta is composed of multiple trophoblast cell types that have diverse endocrine, vascular and nutrient transport functions. We have developed a transgenic system to investigate the developmental and functional roles of specific cell types using conditional expression of a cytotoxin to induce cell ablation in transgenic mice. The Tpbpa gene is expressed in ectoplacental cone cells starting between embryonic days (E) 7.5 and 8.5, and later in the spongiotrophoblast layer of the mature placenta. Tpbpa-positive cells are progenitors of many trophoblast subtypes including three subtypes of trophoblast giant cells (TGCs) and glycogen trophoblast cells. We used a Cre recombinase transgene driven by the Tpbpa promoter to irreversibly activate a diphtheria toxin A (DTA) transgene. Cre/DTA double transgenic placentas showed dramatic reduction of Tpbpa-positive spongiotrophoblast cells by E10.5 and conceptuses died by ~ E11.5. The number of cells associated with maternal blood spaces, spiral artery TGCs (SpA-TGCs) and canal TGCs, and glycogen trophoblast cells were reduced. The loss of these specific trophoblast subtypes, especially SpA-TGCs, was correlated with a decrease in maternal spiral artery diameters, indicating a critical role of these cells in modulating the maternal vasculature. In contrast, parietal TGCs were not significantly reduced by progenitor cell ablation, suggesting that there is compensatory growth of this population and indeed a population of Ascl2 (Mash2)-positive/Tpbpa-negative cells was increased in the spongiotrophoblast layer in the Cre/DTA double transgenics. Our work demonstrates that the Tpbpa-positive lineage is essential for placental function and particularly critical for maternal vasculature remodeling. 相似文献
11.
T G Zybina 《Tsitologiia》1987,29(9):1012-1019
Polyploidization peculiarities of tertiary giant trophoblast cells during their active detaching from the ectoplacental cone and migrating into decidua basalis are investigated. On the 12th day of gestation, the ploidy of the majority of cell nuclei varies within 4-8c, although there are a few 16c and 32c nuclei. On the 13th and 14th days of gestation, the ploidy level of tertiary giant trophoblast cells enhances; 8c and 16c nuclei prevail, the percentage of 32c nuclei increases, 64c nuclei arising. The ploidy level of tertiary giant cell coincides with the average and/or maximum ploidy degree of precursor cell populations. The significance of polyploidy as indispensable condition of differentiation of the trophoblast cells that actively invade into maternal tissues is discussed. 相似文献
12.
13.
The differentiation of murine trophoblast giant cells (TGCs) is well characterised at the molecular level and, to some extent, the cellular level. Currently, there is a rudimentary understanding about factors regulating the cellular differentiation of secondary TGCs. Using day 8.5 p.c.-ectoplacental cone (EPC) explant in serum-free culture, we have found parathyroid hormone-related protein (PTHrP) to regulate cellular changes during TGC differentiation. PTHrP greatly stimulated the formation and organisation of actin stress fibres and actin expression in trophoblast outgrowth. This coincided with changing cell shape into a flattened/fibroblastic morphology, suppression of E-cadherin expression, and increased cell spreading in culture. PTHrP also increased the nuclear staining of beta-catenin and, similar to activator protein-2gamma (AP-2gamma), showed microtubule-dependent nuclear localisation in vitro. These cellular and behavioural changes correlated with changes in the expression of RhoGTPases and in both expression and phosphorylation of Eph/Ephrin kinases. The effects of PTHrP on trophoblast cellular differentiation were abolished after blocking its action. In conclusion, PTHrP provides an excellent example of the extrinsic factors that, through their network of activities, plays an important role in cellular differentiation of secondary TGCs. 相似文献
14.
15.
Michiko Hirose Masashi Hada Satoshi Kamimura Shogo Matoba Arata Honda Kaori Motomura 《Epigenetics》2018,13(7):693-703
Although phenotypic abnormalities frequently appear in the placenta following somatic cell nuclear transfer (SCNT), mouse trophoblast stem cells (TSCs) established from SCNT embryos reportedly show no distinct abnormalities compared with those derived from normal fertilization. In this study, we reexamined SCNT–TSCs to identify their imprinting statuses. Placenta-specific maternally imprinted genes (Gab1, Slc38a4, and Sfmbt2) consistently showed biallelic expression in SCNT–TSCs, suggesting their loss of imprinting (LOI). The LOI of Gab1 was associated with decreased DNA methylation, and that of Sfmbt2 was associated with decreased DNA methylation and histone H3K27 trimethylation. The maternal allele of the intergenic differentially methylated region (IG–DMR) was aberrantly hypermethylated following SCNT, even though this region was prone to demethylation in TSCs when established in a serum-free chemically defined medium. These findings indicate that the development of cloned embryos is associated with imprinting abnormalities specifically in the trophoblast lineage from its initial stage, which may affect subsequent placental development. 相似文献
16.
Relaxin immunoreactivity was previously demonstrated in three cell types within the hamster placenta; fetal primary and secondary giant trophoblast cells (GTCs) and maternal endometrial granulocytes. The objectives of the present research were to examine the ultrastructure of the GTCs and identify the intracellular relaxin storage site. Primary GTCs, first present on day 8 of gestation, were characterized by numerous polyribosomes and large heterogeneous cytoplasmic inclusions suggesting phagocytic activity. Primary and secondary GTCs from days 10, 14, and 15 of gestation contained numerous polyribosomes, mitochondria with tubular cristae, and extensive Golgi complex, and abundant rough endoplasmic reticulum, all characteristics of a cell actively involved in protein synthesis. Membrane-bound secretory granules were not present. Relaxin was immunolocalized within the Golgi complex of primary and secondary GTCs using the avidin-biotin-peroxidase method. Following differential centrifugation of hamster placental homogenates and radioimmunoassay (RIA) of subcellular fractions, the majority of relaxin immunoactivity was detected in the postmicrosomal fraction; however, the majority of relaxin immunoactivity from similarly treated pig corpora lutea was present in the mitochondrial/granule fraction. These data indicate that hamster placental relaxin is not stored in membrane-bound secretory granules but is contained within the extensive Golgi complex of the GTC. 相似文献
17.
18.
S.G. Katz 《Tissue & cell》1995,27(6)
The fine structure of trophoblast giant cells and their interaction with collagen at the antimesometrial region on the 9th day of pregnancy was examined in fed and acute fasted mice. Collagen fibrils and filamentous aggregates (disintegrating collagen fibrils) were observed in the extracellular space. Three types of intracellular vacuoles containing collagen fibrils were present: vacuole type A exhibited typical cross-banded collagen immersed in finely granular electron-translucent material; and vacuoles type B and C showed electron-opaque granular material containing, respectively, faint cross-banded collagen and narrow clear stripes often with faint periodicity. In fed animals vacuoles type B were absent and the others were less evident.Only fasted animals showed extracellular acid phosphatase activity on collagen fibrils, filamentous aggregates and confined regions of the extracellular space. Intracellular acid phosphatase activity was observed in vacuoles type B and in lysosomes.The results indicate that trophoblast giant cells are capable of breaking down extracellular collagen and also of internalizing collagen for intracellular degradation. It is likely that these events are part of the process of invasion of the uterine wall. However, in fasted mice, collagen breakdown is more pronounced, and it may therefore contribute to the provision of amino acids and other nutrients for the undernourished fetus. 相似文献
19.
Maria Salomea Soltyńska Hanna Balakier Anna Witkowska Jolanta Karasiewicz 《Development genes and evolution》1985,194(3):173-177
Summary Mouse morulae from two strains were examined in whole mounts after dissociation of embryos into single cells and were analysed in serial sections by light and electron microscopy. One or two binucleate cells per embryo were discovered in a statistically significant number of morulae. The frequency of morulae with binucleate cell(s) was higher in older morulae than in younger ones. Binucleate cells were always the outer cells of the embryo. Their ultrastructure did not differ from the ultrastructure of mononucleate cells. It is suggested that cell binuclearity at the morula stage is a possible way to polyploidization of nuclei, resulting in the formation of primary trophoblast giant cells. 相似文献
20.