首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Paenibacillus sp. strain 2S-6 was isolated from the black liquor of the first brownstock washing stage of kraft pulping process and identified by its 16S rDNA sequence. This bacterial strain utilized a variety of saccharides and polysaccharides as carbon source, but neither lignin nor lipids. Crude xylanase from Paenibacillus sp. 2S-6 was produced in a 5 L laboratory fermenter at 37 °C, pH 7. After 24 h, up to 10.5 IU xylanase per mg of protein in the crude extract of fermentation broth was obtained. After two-stage ultrafiltration, the optimal activity of partially purified xylanase reached 60.51 IU/mg at 50 °C, pH 6. A major band indicating molecular weight of 33 kDa was shown on SDS-PAGE for the partially purified xylanase. After 4 h at 60 °C, 48.99% and 31.25% residual xylanase activities were demonstrated at pH 7 and 9, respectively. Efficacy of its xylanase on the bleaching agent saving was demonstrated by using 5 IU xylanase per gram oven-dried pulp prior to bleaching, referred as biobleaching. Identical levels of brightness and higher levels of viscosity were obtained for the xylanase pretreated eucalypt kraft pulps followed by a 20% reduction of the bleaching agent dosage in the first step of a commercial C70/D30-Eo-D bleaching sequence.  相似文献   

2.
Trichoderma reesei VTT-D-86271 (Rut C-30) was cultivatedon media based on cellulose and xylan as the main carbon source in fermentors with different pH minimum controls. Production of xylanase was favoured by a rather high pH minimum control between 6.0 and 7.0 on both cellulose- and xylan-based media. Although xylanase was produced efficiently on cellulose as well as on xylan as the carbon source, significant production of cellulose was observed only on the cellulose-based medium and best production was at lower pH (4.0 minimum). Production of xylanase at pH 7.0 was shown to be dependent on the nature of the xylan in the cultivation medium but was independent of other organic components. Best production of xylanase was observed on insoluble, unsubstituted beech xylan at pH 7.0. Similar results were obtained in laboratory and pilot (200-l) fermentors. Downstream processing of the xylanase-rich, low-cellulose culture filtrate presented no technical problems despite apparent autolysis of the fungus at the high pH. Enzyme produced in the 200-l pilot fermentor was shown to be suitable for use in enzyme-aided bleaching of kraft pulp. Due to the high xylanase/cellulase ratio of enzyme activities in the culture filtrate, pretreatment for removal of cellulase activity prior to pulp bleaching was unnecessary. Correspondence to: M. J. Bailey  相似文献   

3.
Summary The two major xylanases of Trichoderma reesei with different pI values and pH optima were compared for increasing the bleachability of pine kraft pulp. The efficiencies of the two enzymes acting on pulp substrate were very similar in hydrolysis yield, extraction kappa number or final brightness value. Only slight synergism between the two enzymes was observed in both hydrolysis and bleaching tests. The pH optimum of the pI 5.5 xylanase was similar in pulp treatment and in the hydrolysis of isolated substrates, and the bleaching result also correlated well with the hydrolysis of pulp xylan. By contrast, the pI 9.0 xylanase acted differently on pulp than on isolated xylans at different pH values and the pH optimum on pulp was increased. The bleachability of pulp by the pI 9.0 xylanase was improved more than expected at pH 7.0, although the hydrolysis of pulp xylan was substantially decreased. A similar phenomenon was also observed when the hydrolysis was performed in water instead of buffer. It thus appears that the degree of hydrolysis needed to obtain improved bleachability with pI 9.0 xylanase can be minimized by proper adjustment of the hydrolysis conditions. Correspondence to: J. Buchert  相似文献   

4.
Abstract: Use of hemicellulases, including xylanases, for delignification in the paper industry has been slowed down by the lack of large-scale availability of enzymes which are active at a high pH (above 8) and a high temperature (above 60°C), conditions prevailing in many bleaching processes. During the past years, acidic or neutral hemicellulases, working at temperatures below 60°C, were used in most mill experiments. The Korsäs T6 xylanase from Bacillus stearothermophilus , which is active at a pH above 9.0 and at a temperature above 65°C, was produced on a large scale in collaboration with Gist-brocades and was employed on a full scale mill trial to produce a Total Chlorine chemical-Free (TCF) pulp from softwood. The bleaching sequence used was (OO)BQQPP. where O stands for oxygen delignification. B for the enzymatic treatment, Q for the chelating agent step and P for the hydrogen peroxide step. The enzyme bleaching step was performed during a period of 4 h at 63 ± 1°C and pH 8.7 ± 0.1. The results of the mill trial show that the TCF pulp produced had a brightness of 78% ISO and, at the same time, it preserved the same strength properties as chlorine dioxide-bleached pulp. The saving of hydrogen peroxide was 20%. The results on brightness, strength and chemical saving of this first full scale trial with T6 xylanase indicate that, after optimization, a TCF bleaching sequence including an enzymatic step with a xylanase working at a high pH and a high temperature, such as T6 xylanase, can be used to produce a high-strength bleached pulp. The advantages of a high pH and a high temperature enzymatic bleaching step are discussed.  相似文献   

5.
The purpose of this study was to produce a Trichoderma reesei xylanase (XYN2) in Pichia pastoris and to test its potential application for pulp bleaching. The recombinant xylanase was purified by a two-step process of ultrafiltration and gel filtration chromatography. The molecular mass of the recombinant enzyme was 21 and 25 kDa by SDS–PAGE analysis, due to different glycosylation of the native protein. The optimum pH and temperature of the recombinant XYN2 was 5.0 and 50 °C. Enzyme activity was stable at 50 °C and at pH 5.0–7.0. The bleaching ability of the recombinant xylanase was also studied at 50 °C and pH 6.0, using wheat straw pulp. Biobleaching of the xylanase produced chlorine dioxide savings of up to 60%, while retaining brightness at the control level and led to a lower kappa number and small enhancements in tensile, burst and tear strength of pulp fibers.  相似文献   

6.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

7.
Xylanases of marine fungi of potential use for biobleaching of paper pulp   总被引:1,自引:0,他引:1  
Microbial xylanases that are thermostable, active at alkaline pH and cellulase-free are generally preferred for biobleaching of paper pulp. We screened obligate and facultative marine fungi for xylanase activity with these desirable traits. Several fungal isolates obtained from marine habitats showed alkaline xylanase activity. The crude enzyme from NIOCC isolate 3 (Aspergillus niger), with high xylanase activity, cellulase-free and unique properties containing 580 U l–1 xylanase, could bring about bleaching of sugarcane bagasse pulp by a 60 min treatment at 55°C, resulting in a decrease of ten kappa numbers and a 30% reduction in consumption of chlorine during bleaching. The culture filtrate showed peaks of xylanase activity at pH 3.5 and pH 8.5. When assayed at pH 3.5, optimum activity was detected at 50°C, with a second peak of activity at 90°C. When assayed at pH 8.5, optimum activity was seen at 80°C. The crude enzyme was thermostable at 55°C for at least 4 h and retained about 60% activity. Gel filtration of the 50–80% ammonium sulphate-precipitated fraction of the crude culture filtrate separated into two peaks of xylanase with specific activities of 393 and 2,457 U (mg protein)–1. The two peaks showing xylanase activity had molecular masses of 13 and 18 kDa. Zymogram analysis of xylanase of crude culture filtrate as well as the 50–80% ammonium sulphate-precipitated fraction showed two distinct xylanase activity bands on native PAGE. The crude culture filtrate also showed moderate activities of -xylosidase and -l-arabinofuranosidase, which could act synergistically with xylanase in attacking xylan. This is the first report showing the potential application of crude culture filtrate of a marine fungal isolate possessing thermostable, cellulase-free alkaline xylanase activity in biobleaching of paper pulp.  相似文献   

8.
A xylanase purified from the thermophilic fungus Thermomyces lanuginosus CBS 288.54 was characterized and its potential application in wheat straw pulp biobleaching was evaluated. Xylanase was purified 33.6-fold to homogeneity with a recovery yield of 21.5%. It appeared as a single protein band on SDS-PAGE gel with a molecular mass of approx. 26.2 kDa. The purified xylanase had a neutral optimum pH ranging from pH 7.0 to pH 7.5, and it was also stable over pH 6.5-10.0. The optimal temperature of the xylanase was 70-75 degrees C and it was stable up to 65 degrees C. The purified xylanase was found to be not glycosylated. The xylanase was highly specific towards xylan, but did not exhibit other enzyme activity. Apparent Km values of the xylanase for birchwood, beechwood, soluble oat-spelt and insoluble oat-spelt xylans were 4.0, 4.7, 2.0 and 23.4 mg ml-1, respectively. The potential application of the xylanase was further evaluated in biobleaching of wheat straw pulp. The brightness of bleached pulps from the xylanase pretreated wheat straw pulp was 1.8-7.79% ISO higher than that of the control, and showed slightly lower tensile index and breaking length than the control. Although chlorine consumption was reduced by 28.3% during bleaching, the xylanase pretreated pulp (15 U g-1 pulp) still maintained its brightness at the control level. Besides, pretreatment of pulp with the xylanase was also effective at an alkaline pH as high as pH 10.0.  相似文献   

9.
利用来自海栖热袍茵的重组极耐热木聚糖酶XynB和来自嗜热栖热菌Thermus thermophilus HB27的重组极耐热漆酶Tth-laccase对麦草浆进行协同漂白。结果表明,当未漂浆经XL漂序处理(X:重组木聚糖酶用量20 U/g绝干浆,pH 5.8,温度90℃,浆浓8%,处理时间2 h;L:重组漆酶用量3 U/g绝干浆,pH 4.5,温度90℃,浆浓8%,处理时间1.5 h),可获得最佳漂白效果。与对照浆比较,XL处理使浆料白度提升11.5%ISO,卡伯值降低6.9。双酶协同处理在改善浆料可漂性的同时,对纸浆纤维强度无负面影响。在后续过氧化氢漂白段中,当漂终白度相近时,XL预处理浆可节省约50%H_2O_2消耗量。  相似文献   

10.
Xylanase produced from the newly isolated Penicillium crustosum FP 11 and its potential in the prebleaching of kraft pulp were evaluated using a statistical approach. A Plackett–Burman design (PBD) was carried out to select the significant variables of the medium, these being NaNO3, KH2PO4, MgSO4, KCl, Fe2(SO4)3, yeast extract, corn stover, and initial pH, in a liquid culture under static conditions for 6 d at 28?°C. Statistical analysis with a central composite design and response surface methodology showed that 0.15% (w/v) KH2PO4, 2% (w/v) corn stover, and an initial pH of 6.0 provided the best conditions for xylanase production. Furthermore, xylanase from P. crustosum FP 11 was effective in the bleaching of Eucalyptus kraft pulp, with a significant kappa efficiency of 35.04%. Therefore, the newly isolated P. crustosum FP 11 from the Atlantic Forest biome in Brazil showed two advantages: xylanase production with agricultural residue (corn stover) as a carbon source and an improvement in the bleaching of kraft pulp. Environmental pollution could thus be minimized because of a reduction in the use of chlorine as a bleaching agent.  相似文献   

11.
A genomic library of the Dictyoglomus sp. strain Rt46B.1 was constructed in the phage vector lambda ZapII and screened for xylanase activity. A plaque expressing xylanase activity, designated B6-77, was isolated and shown to contain a genomic insert of 5.3 kb. Subcloning revealed that the xylanase activity was restricted to a internal 1,507-bp PstI-HindIII fragment which was subsequently sequenced and shown to contain a single complete open reading frame coding for a single-domain xylanase, XynA, with a putative length of 352 amino acids. Homology comparisons show that XynA is related to the family F group of xylanases. The temperature and pH optima of the recombinant enzyme were determined to be 85 degrees C and pH 6.5, respectively. However, the enzyme was active across a broad pH range, with over 50% activity between pH 5.5 and 9.5. XynA was shown to be a true endo-acting xylanase, being capable of hydrolyzing xylan to xylotriose and xylobiose, but it could not hydrolyze xylobiose to monomeric xylose. XynA was also shown to hydrolyze xylan present in Pinus radiata kraft pulp, indicating that it may be of use as an aid in pulp bleaching. The equivalent xylanase gene was also isolated from the related bacterium Dictyoglomus thermophilum, and DNA sequencing showed these genes to be identical, which, together with the 16S small-subunit rRNA gene sequencing data, indicates that Rt46B.1 and D. thermophilum are very closely related.  相似文献   

12.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

13.
The effects of multiple xylanase treatments were assessed during the peroxide bleaching of three pulps: Douglas-fir (kraft); Western hemlock (oxygen delignified kraft); and trembling Aspen (kraft). The addition of a xylanase treatment stage, either before or after the peroxide bleaching stage(s), resulted in the enhanced brightening of all pulps. A higher brightness was achieved using two enzyme treatments, one before and one after the peroxide stage(s). Both bleach boosting and direct brightening seemed to contribute to the enhancement of the peroxide bleaching. Compared to xylanase prebleaching, xylanase posttreatment of peroxide bleached pulps solubilized less lignin and chromophores and made smaller amounts of these materials alkaline soluble. Nevertheless, the final brightness achieved by xylanase posttreatment was similar or superior to that achieved with xylanase prebleaching of the corresponding unbleached pulps. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 312-318, 1997.  相似文献   

14.
木聚糖是一种在自然界中含量仅次于纤维素的丰富的可再生资源,木聚糖酶是一类可以将木聚糖水解成单糖和寡糖的酶,利用木聚糖酶将木聚糖分解后的产物被广泛应用于食品、造纸以及纺织等行业。木聚糖酶按其对酸碱环境的耐受能力分为碱性木聚糖酶、中性木聚糖酶和酸性木聚糖酶,其中碱性木聚糖酶适合应用于造纸工业中,尤其在造纸的制浆、促进漂白及废纸脱墨等多种工艺中,可以显著提高纸张质量,有效降低氯气排放量,从而减少对环境的污染。随着生物技术的进步,利用基因工程技术可以对碱性木聚糖酶进行分子改造,以提高其耐碱、耐热能力,扩大其在工业应用中的条件范围。介绍碱性木聚糖酶在分子改造方面的研究进展以及其在造纸漂白和制浆、废纸脱墨中的应用。  相似文献   

15.
Effects of surfactants on the enzymatic bleaching of kraft pulp by xylanase   总被引:1,自引:0,他引:1  
A xylanase was purified from a commercial crude xylanase, Pulpzyme HC, and used for the bleaching of kraft pulp in the absence or in the presence of nonionic surfactants, Tween 20, Tween 80, and Igepal C930. The purified xylanase has a molecular weight of 23,500 as determined by a reducing SDS-PAGE. Tween 20 was most effective to enhance the efficiency of the enzymatic bleaching of kraft pulp by xylanase.  相似文献   

16.
Bae HJ  Kim HJ  Kim YS 《Bioresource technology》2008,99(9):3513-3519
The purpose of this study was to produce recombinant xylanase in transgenic plants and to test its potential application for pulp bleaching. The xynII xylanase gene from Trichoderma reesei was inserted into the Arabidopsis genome. Many transgenic plants produced biologically active XYNII and accumulated in leaves at level of 1.4-3.2% of total soluble proteins. The bleaching ability of XYNII on Kraft pulp was demonstrated by a reduction in the kappa number and the residual lignin contents. The bleaching efficiency of transgenic plant produced XYNII was similar to commercial xylanase on unbleached Kraft pulp. The effect of xylanase treatment on Kraft pulp was also investigated by SEM. Clear physical change on the pulp fiber surface was observed and was related to the amount xylan removed and microfibrils were visible on the fiber surface. This report demonstrates the potential application of plant produced recombinant xylanase for pulp and paper bleaching.  相似文献   

17.
A metagenomic xylanase gene (Mxyl) was successfully cloned into shuttle vector pWH1520 and expressed in Bacillus subtilis extracellularly. On induction with xylose, recombinant xylanase secretion commenced after 6 h. Identifying critical variables for recombinant xylanase production by one‐variable‐at‐time approach followed by optimization of the selected variables (xylose, inoculum density, incubation density) by response surface methodology (RSM) led to three‐fold enhancement in extracellular xylanase production (119 U mL?1). When the pulp was treated with recombinant xylanase at 80°C and pH 9.0, kappa number of the pulp was reduced with concomitant increase in brightness and 24% reduction in chlorine consumption. This is the first report on the expression of metagenomic xylanase gene in Bacillus subtilis extracellularly and its utility in developing an environment‐friendly pulp bleaching process. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1441–1447, 2013  相似文献   

18.
The possibility of using xylanase preparations for hydrolyzing hemicelluloses in a non-bleached kraft pulp in order to facilitate its bleaching was studied. The effects of enzymatic preparations of fungal and bacterial origins were examined, and the optimal conditions for xylanase activity were determined. UV spectroscopy demonstrated that the treatment of kraft pulp with enzymatic preparations containing xylanase facilitated the subsequent removal of lignin and increased the brightness by 5%. The effect of enzymatic treatment was retained in the case of peroxide bleaching. The enzymatic preparations studied are promising for the development of chlorine-free pulp bleaching technologies.  相似文献   

19.
The possibility of the use of xylanase preparations for hydrolysing hemicelluloses in a non-bleached kraft pulp in order to facilitate its bleaching was studied. The effects of enzymatic preparations of the fungal and bacterial origins were examined, and the optimal conditions for xylanase activity were determined. UV spectroscopy demonstrated that the treatment of kraft pulp with the enzymatic preparations containing xylanase facilitated the subsequent removal of lignin and increased the brightness by 5%. The effect of enzymatic treatment was retained in the case of peroxide bleaching. The enzymatic preparations studied are promising for the development of chlorine-free pulp bleaching technologies.  相似文献   

20.
Industrial eucalypt (E. globulus L.) kraft pulp was treated with two commercial xylanase preparations Ecopulp® TX-200A and Pulpzyme® HC (endo-1,4-β-xylanase activity; EC 3.2.1.8) and bleached by totally chlorine-free (TCF) three-stage hydrogen peroxide bleaching sequence, without oxygen pre-delignification. The effect of enzymatic stage on pulp properties and bleachability has been studied and compared with reference (control) pulps, processed without enzyme addition. The similar mode of enzymatic action was noted for both xylanase preparations. Final brightness of 86% ISO was achieved after complete bleaching. Direct bleaching effect caused pulp brightening (by 1.2–1.5% ISO) and delignification (by 7–10%) immediately after the enzymatic stage. The maximal bleach boosting was shown after the first peroxide stage and then diminished, despite the progressive increase in delignification over the control. The loss in efficiency of xylanase treatment by the end of peroxide bleaching was associated with specific behavior of xylan-derived chromophores, i.e., hexenuronic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号