首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Graph layout is extensively used in the field of mathematics and computer science, however these ideas and methods have not been extended in a general fashion to the construction of graphs for biological data. To this end, we have implemented a version of the Fruchterman Rheingold graph layout algorithm, extensively modified for the purpose of similarity analysis in biology. This algorithm rapidly and effectively generates clear two (2D) or three-dimensional (3D) graphs representing similarity relationships such as protein sequence similarity. The implementation of the algorithm is general and applicable to most types of similarity information for biological data. AVAILABILITY: BioLayout is available for most UNIX platforms at the following web-site: http://www.ebi.ac.uk/research/cgg/services/layout.  相似文献   

4.
SEBINI: Software Environment for BIological Network Inference   总被引:1,自引:0,他引:1  
The Software Environment for BIological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment and evaluation of algorithms used to reconstruct the structure of biological regulatory and interaction networks. SEBINI can be used to compare and train network inference methods on artificial networks and simulated gene expression perturbation data. It also allows the analysis within the same framework of experimental high-throughput expression data using the suite of (trained) inference methods; hence SEBINI should be useful to software developers wishing to evaluate, compare, refine or combine inference techniques, and to bioinformaticians analyzing experimental data. SEBINI provides a platform that aids in more accurate reconstruction of biological networks, with less effort, in less time. AVAILABILITY: A demonstration website is located at https://www.emsl.pnl.gov/NIT/NIT.html. The Java source code and PostgreSQL database schema are available freely for non-commercial use.  相似文献   

5.
Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html.  相似文献   

6.
The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results.  相似文献   

7.
BioNetBuilder: automatic integration of biological networks   总被引:1,自引:0,他引:1  
BioNetBuilder is an open-source client-server Cytoscape plugin that offers a user-friendly interface to create biological networks integrated from several databases. Users can create networks for approximately 1500 organisms, including common model organisms and human. Currently supported databases include: DIP, BIND, Prolinks, KEGG, HPRD, The BioGrid and GO, among others. The BioNetBuilder plugin client is available as a Java Webstart, providing a platform-independent network interface to these public databases. Availability: http://err.bio.nyu.edu/cytoscape/bionetbuilder/  相似文献   

8.
MAVisto: a tool for the exploration of network motifs   总被引:1,自引:0,他引:1  
SUMMARY: MAVisto is a tool for the exploration of motifs in biological networks. It provides a flexible motif search algorithm and different views for the analysis and visualization of network motifs. These views help to explore interesting motifs: the frequency of motif occurrences can be compared with randomized networks, a list of motifs along with information about structure and number of occurrences depending on the reuse of network elements shows potentially interesting motifs, a motif fingerprint reveals the overall distribution of motifs of a given size and the distribution of a particular motif in the network can be visualized using an advanced layout algorithm. AVAILABILITY: MAVisto is platform independent and available free of charge as a Java webstart application at http://mavisto.ipk-gatersleben.de/ CONTACT: schwoebb@ipk-gatersleben.de SUPPLEMENTARY INFORMATION: Can be found at http://mavisto.ipk-gatersleben.de/  相似文献   

9.
Cerebral (Cell Region-Based Rendering And Layout) is an open-source Java plugin for the Cytoscape biomolecular interaction viewer. Given an interaction network and subcellular localization annotation, Cerebral automatically generates a view of the network in the style of traditional pathway diagrams, providing an intuitive interface for the exploration of a biological pathway or system. The molecules are separated into layers according to their subcellular localization. Potential products or outcomes of the pathway can be shown at the bottom of the view, clustered according to any molecular attribute data-protein function-for example. Cerebral scales well to networks containing thousands of nodes. AVAILABILITY: http://www.pathogenomics.ca/cerebral  相似文献   

10.
PiNGO is a tool to screen biological networks for candidate genes, i.e. genes predicted to be involved in a biological process of interest. The user can narrow the search to genes with particular known functions or exclude genes belonging to particular functional classes. PiNGO provides support for a wide range of organisms and Gene Ontology classification schemes, and it can easily be customized for other organisms and functional classifications. PiNGO is implemented as a plugin for Cytoscape, a popular network visualization platform. AVAILABILITY: PiNGO is distributed as an open-source Java package under the GNU General Public License (http://www.gnu.org/), and can be downloaded via the Cytoscape plugin manager. A detailed user guide and tutorial are available on the PiNGO website (http://www.psb.ugent.be/esb/PiNGO.  相似文献   

11.
12.
Extraction of biological interaction networks from scientific literature   总被引:2,自引:0,他引:2  
Biology can be regarded as a science of networks: interactions between various biological entities (eg genes, proteins, metabolites) on different levels (eg gene regulation, cell signalling) can be represented as graphs and, thus, analysis of such networks might shed new light on the function of biological systems. Such biological networks can be obtained from different sources. The extraction of networks from text is an important technique that requires the integration of several different computational disciplines. This paper summarises the most important steps in network extraction and reviews common approaches and solutions for the extraction of biological networks from scientific literature.  相似文献   

13.
14.
BioJava: an open-source framework for bioinformatics   总被引:1,自引:0,他引:1  
SUMMARY: BioJava is a mature open-source project that provides a framework for processing of biological data. BioJava contains powerful analysis and statistical routines, tools for parsing common file formats and packages for manipulating sequences and 3D structures. It enables rapid bioinformatics application development in the Java programming language. AVAILABILITY: BioJava is an open-source project distributed under the Lesser GPL (LGPL). BioJava can be downloaded from the BioJava website (http://www.biojava.org). BioJava requires Java 1.5 or higher. All queries should be directed to the BioJava mailing lists. Details are available at http://biojava.org/wiki/BioJava:MailingLists.  相似文献   

15.
Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA), this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC) curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.  相似文献   

16.
Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.  相似文献   

17.
GSEA-P: a desktop application for Gene Set Enrichment Analysis   总被引:4,自引:0,他引:4  
Gene Set Enrichment Analysis (GSEA) is a computational method that assesses whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states. We report the availability of a new version of the Java based software (GSEA-P 2.0) that represents a major improvement on the previous release through the addition of a leading edge analysis component, seamless integration with the Molecular Signature Database (MSigDB) and an embedded browser that allows users to search for gene sets and map them to a variety of microarray platform formats. This functionality makes it possible for users to directly import gene sets from MSigDB for analysis with GSEA. We have also improved the visualizations in GSEA-P 2.0 and added links to a new form of concise gene set annotations called Gene Set Cards. These additions, as well as other improvements suggested by over 3500 users who have downloaded the software over the past year have been incorporated into this new release of the GSEA-P Java desktop program. AVAILABILITY: GSEA-P 2.0 is freely available for academic and commercial users and can be downloaded from http://www.broad.mit.edu/GSEA  相似文献   

18.
Functional annotation of regulatory pathways   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号