首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pharmacological modulation of ATP-sensitive K+ (K(ATP)) channels is used in the treatment of a number of clinical conditions, including type 2 diabetes and angina. The sulphonylureas and related drugs, which are used to treat type 2 diabetes, stimulate insulin secretion by closing K(ATP) channels in pancreatic beta-cells. Agents used to treat angina, by contrast, act by opening K(ATP) channels in vascular smooth and cardiac muscle. Both the therapeutic K(ATP) channel inhibitors and the K(ATP) channel openers target the sulphonylurea receptor (SUR) subunit of the K(ATP) channel, which exists in several isoforms expressed in different tissues (SUR1 in pancreatic beta-cells, SUR2A in cardiac muscle and SUR2B in vascular smooth muscle). The tissue-specific action of drugs that target the K(ATP) channel is attributed to the properties of these different SUR subtypes. In this review, we discuss the molecular basis of tissue-specific drug action, and its implications for clinical practice.  相似文献   

2.
Zerangue N  Schwappach B  Jan YN  Jan LY 《Neuron》1999,22(3):537-548
Proper ion channel function often requires specific combinations of pore-forming alpha and regulatory beta subunits, but little is known about the mechanisms that regulate the surface expression of different channel combinations. Our studies of ATP-sensitive K+ channel (K(ATP)) trafficking reveal an essential quality control function for a trafficking motif present in each of the alpha (Kir6.1/2) and beta (SUR1) subunits of the K(ATP) complex. We show that this novel motif for endoplasmic reticulum (ER) retention/retrieval is required at multiple stages of K(ATP) assembly to restrict surface expression to fully assembled and correctly regulated octameric channels. We conclude that exposure of a three amino acid motif (RKR) can explain how assembly of an ion channel complex is coupled to intracellular trafficking.  相似文献   

3.
We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.  相似文献   

4.
The K(ATP) channel is an important player in vascular tone regulation. Its opening and closure lead to vasodilation and vasoconstriction, respectively. Such functions may be disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrated that S-glutathionylation was a modulation mechanism underlying oxidant-mediated vascular K(ATP) channel regulation. An exposure of isolated mesenteric rings to hydrogen peroxide (H(2)O(2)) impaired the K(ATP) channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, H(2)O(2) or diamide caused a strong inhibition of the vascular K(ATP) channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH). Similar channel inhibition was seen with oxidized glutathione (GSSG) and thiol-modulating reagents. The oxidant-mediated channel inhibition was reversed by the reducing agent dithiothreitol (DTT) and the specific deglutathionylation reagent glutaredoxin-1 (Grx1). Consistent with S-glutathionylation, streptavidin pull-down assays with biotinylated glutathione ethyl ester (BioGEE) showed incorporation of GSH to the Kir6.1 subunit in the presence of H(2)O(2). These results suggest that S-glutathionylation is an important mechanism for the vascular K(ATP) channel modulation in oxidative stress.  相似文献   

5.
Isoflurane mimics the cardioprotective effect of acute ischemic preconditioning with an acute memory phase. We determined whether isoflurane can induce delayed cardioprotection, the involvement of ATP-sensitive potassium (K(ATP)) channels, and cellular location of the channels. Neonatal New Zealand White rabbits at 7-10 days of age (n = 5-16/group) were exposed to 1% isoflurane-100% oxygen for 2 h. Hearts exposed 2 h to 100% oxygen served as untreated controls. Twenty-four hours later resistance to myocardial ischemia was determined using an isolated perfused heart model. Isoflurane significantly reduced infarct size/area at risk (means +/- SD) by 50% (10 +/- 5%) versus untreated controls (20 +/- 6%). Isoflurane increased recovery of preischemic left ventricular developed pressure by 28% (69 +/- 4%) versus untreated controls (54 +/- 6%). The mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD) completely (55 +/- 3%) and the sarcolemmal K(ATP) channel blocker HMR 1098 partially (62 +/- 3%) attenuated the cardioprotective effects of isoflurane. The combination of 5-HD and HMR-1098 completely abolished the cardioprotective effect of isoflurane (56 +/- 5%). We conclude that both mitochondrial and sarcolemmal K(ATP) channels contribute to isoflurane-induced delayed cardioprotection.  相似文献   

6.
ATP-sensitive potassium (K(ATP)) channels are inhibited by intracellular ATP and activated by ADP. Nutrient oxidation in beta-cells leads to a rise in [ATP]-to-[ADP] ratios, which in turn leads to reduced K(ATP) channel activity, depolarization, voltage-dependent Ca(2+) channel activation, Ca(2+) entry, and exocytosis. Persistent hyperinsulinemic hypoglycemia of infancy (HI) is a genetic disorder characterized by dysregulated insulin secretion and, although rare, causes severe mental retardation and epilepsy if left untreated. The last five or six years have seen rapid advance in understanding the molecular basis of K(ATP) channel activity and the molecular genetics of HI. In the majority of cases for which a genotype has been uncovered, causal HI mutations are found in one or the other of the two genes, SUR1 and Kir6.2, that encode the K(ATP) channel. This article will review studies that have defined the link between channel activity and defective insulin release and will consider implications for future understanding of the mechanisms of control of insulin secretion in normal and diseased states.  相似文献   

7.
We tested whether close coupling exists between mitochondria and sarcolemma by monitoring whole cell ATP-sensitive K(+) (K(ATP)) current (I(K,ATP)) as an index of subsarcolemmal energy state during mitochondrial perturbation. In rabbit ventricular myocytes, either pinacidil or the mitochondrial uncoupler dinitrophenol (DNP), which rapidly switches mitochondria from net ATP synthesis to net ATP hydrolysis, had little immediate effect on I(K,ATP). In contrast, in the presence of pinacidil, exposure to 100 microM DNP rapidly activated I(K,ATP) with complex kinetics consisting of a quick rise [time constant of I(K,ATP) increase (tau) = 0.13 +/- 0.01 min], an early partial recovery (tau = 0.43 +/- 0.04 min), and then a more gradual increase. This DNP-induced activation of I(K,ATP) was reversible and accompanied by mitochondrial flavoprotein oxidation. The F(1)F(0)-ATPase inhibitor oligomycin abolished the DNP-induced activation of I(K,ATP). The initial rapid rise in I(K,ATP) was blunted by atractyloside (an adenine nucleotide translocator inhibitor), leaving only a slow increase (tau = 0.66 +/- 0.17 min, P < 0.01). 2,4-Dinitrofluorobenzene (a creatine kinase inhibitor) slowed both the rapid rise (tau = 0.20 +/- 0.01 min, P < 0.05) and the subsequent declining phase (tau = 0.88 +/- 0.19 min, P < 0.05). From single K(ATP) channel recordings, we excluded a direct effect of DNP on K(ATP) channels. Taken together, these results indicate that rapid changes in F(1)F(0)-ATPase function dramatically alter subsarcolemmal energy charge, as reported by pinacidil-primed K(ATP) channel activity, revealing cross-talk between mitochondria and sarcolemma. The effects of mitochondrial ATP hydrolysis on sarcolemmal K(ATP) channels can be rationalized by reversal of F(1)F(0)-ATPase and the facilitation of coupling by the creatine kinase system.  相似文献   

8.
How renal epithelial cells respond to increased pressure and the link with kidney disease states remain poorly understood. Pkd1 knockout or expression of a PC2 pathogenic mutant, mimicking the autosomal dominant polycystic kidney disease, dramatically enhances mechanical stress-induced tubular apoptotic cell death. We show the presence of a stretch-activated K(+) channel dependent on the TREK-2 K(2P) subunit in proximal convoluted tubule epithelial cells. Our findings further demonstrate that polycystins protect renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K(2P) channels. Thus, to our knowledge, we establish for the first time, both in vitro and in vivo, a functional relationship between mechanotransduction and mechanoprotection. We propose that this mechanism is at play in other important pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including heart failure or atherosclerosis.  相似文献   

9.
We have investigated the protein interactions involved in the assembly of pancreatic beta-cell ATP-sensitive potassium channels. The channels are a heterooligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits. SUR1 belongs to the ATP binding cassette (ABC) family of proteins and has two nucleotide binding domains (NBD1 and NBD2) and 17 putative transmembrane (TM) sequences. Previously we showed that co-expression in a baculovirus expression system of two parts of SUR1 divided at Pro1042 between TM12 and 13 leads to restoration of glibenclamide binding activity, whereas expression of either individual N- or C-terminal domain alone gave no glibenclamide binding activity [M.V. Mikhailov and S.J.H. Ashcroft (2000) J. Biol. Chem. 275, 3360-3364]. Here we show that the two half-molecules formed by division of SUR1 between NBD1 and TM12 or between TM13 and 14 also self-assemble to give glibenclamide binding activity. However, deletion of NBD1 from the N-part of SUR1 abolished SUR1 assembly, indicating a critical role for NBD1 in SUR1 assembly. We found that differences in glibenclamide binding activity obtained after co-expression of different half-molecules are attributable to different amounts of binding sites, but the binding affinities remained nearly the same. Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity only when the N-half of SUR1 included TM12. We conclude that TM12 and 13 are not essential for SUR1 assembly whereas TM12 takes part in SUR1 Kir6.2 interaction. This interaction is specific for Kir 6.2 because no enhancement of glibenclamide binding was observed when half-molecules were expressed together with Kir4.1. We propose a model of K(ATP) channel organisation based on these data.  相似文献   

10.
ATP-sensitive potassium (K(ATP)) channels are expressed in many excitable, as well as epithelial, cells and couple metabolic changes to modulation of cell activity. ATP regulation of K(ATP) channel activity may involve direct binding of this nucleotide to the pore-forming inward rectifier (Kir) subunit despite the lack of known nucleotide-binding motifs. To examine this possibility, we assessed the binding of the fluorescent ATP analogue, 2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)adenosine 5'-triphosphate (TNP-ATP) to maltose-binding fusion proteins of the NH(2)- and COOH-terminal cytosolic regions of the three known K(ATP) channels (Kir1.1, Kir6.1, and Kir6.2) as well as to the COOH-terminal region of an ATP-insensitive inward rectifier K(+) channel (Kir2.1). We show direct binding of TNP-ATP to the COOH termini of all three known K(ATP) channels but not to the COOH terminus of the ATP-insensitive channel, Kir2.1. TNP-ATP binding was specific for the COOH termini of K(ATP) channels because this nucleotide did not bind to the NH(2) termini of Kir1.1 or Kir6.1. The affinities for TNP-ATP binding to K(ATP) COOH termini of Kir1.1, Kir6.1, and Kir6.2 were similar. Binding was abolished by denaturing with 4 m urea or SDS and enhanced by reduction in pH. TNP-ATP to protein stoichiometries were similar for all K(ATP) COOH-terminal proteins with 1 mol of TNP-ATP binding/mole of protein. Competition of TNP-ATP binding to the Kir1.1 COOH terminus by MgATP was complex with both Mg(2+) and MgATP effects. Glutaraldehyde cross-linking demonstrated the multimerization potential of these COOH termini, suggesting that these cytosolic segments may directly interact in intact tetrameric channels. Thus, the COOH termini of K(ATP) tetrameric channels contain the nucleotide-binding pockets of these metabolically regulated channels with four potential nucleotide-binding sites/channel tetramer.  相似文献   

11.
beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.  相似文献   

12.
Chronic ingestion of low doses of ethanol protects the myocardium from ischemic injury by activating adenosine receptors and protein kinase C. We tested the hypothesis that ATP-dependent potassium (K(ATP)) channels mediate these beneficial effects. Dogs were fed with ethanol (1.5 g/kg) or water mixed with dry food twice per day for 12 wk. After they were acutely instrumented for measurement of hemodynamics, dogs received saline (vehicle) or glyburide (0.1 mg/kg iv) and were subjected to 60 min of coronary artery occlusion followed by 3 h of reperfusion. Infarct size (through triphenyltetrazolium chloride staining) was significantly (P < 0.05) reduced to 14 +/- 1% of the left ventricular area at risk in ethanol-pretreated dogs compared with controls (25 +/- 2%). Glyburide alone did not affect infarct size (25 +/- 3%) but abolished the protective effects of ethanol pretreatment (28 +/- 3%). No differences in hemodynamics or coronary collateral blood flow (through radioactive microspheres) were observed among groups. The results indicate that K(ATP) channels mediate the protective effects of chronic consumption of ethanol.  相似文献   

13.
14.
Hyperglycemia is an important predictor of cardiovascular mortality in patients with diabetes. We investigated the hypothesis that diabetes or acute hyperglycemia attenuates the reduction of myocardial infarct size produced by activation of mitochondrial ATP-regulated potassium (K(ATP)) channels. Acutely instrumented barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium chloride staining) was 25 +/- 1, 28 +/- 3, and 25 +/- 1% of the area at risk (AAR) for infarction in control, diabetic (3 wk after streptozotocin-alloxan), and hyperglycemic (15% intravenous dextrose) dogs, respectively. Diazoxide (2.5 mg/kg iv) significantly decreased infarct size (10 +/- 1% of AAR, P < 0.05) but did not produce protection in the presence of diabetes (28 +/- 5%) or moderate hyperglycemia (blood glucose 310 +/- 10 mg/dl; 23 +/- 2%). The dose of diazoxide and the degree of hyperglycemia were interactive. Profound (blood glucose 574 +/- 23 mg/dl) but not moderate hyperglycemia blocked the effects of high-dose (5.0 mg/kg) diazoxide [26 +/- 3, 15 +/- 3 (P < 0.05), and 11 +/- 2% (P < 0.05), respectively]. There were no differences in systemic hemodynamics, AAR, or coronary collateral blood flow (by radioactive microspheres) between groups. The results indicate that diabetes or hyperglycemia impairs activation of mitochondrial K(ATP) channels.  相似文献   

15.
Inwardly rectifying K(+) currents are generated by a complex of four Kir (Kir1-6) subunits. Pore properties are conferred by the second transmembrane domain (M2) of each subunit. Using cadmium ions as a cysteine-interacting probe, we examined the accessibility of substituted cysteines in M2 of the Kir6.2 subunit of inwardly rectifying K(ATP) channels. The ability of Cd(2+) ions to inhibit channels was used as the estimate of accessibility. The distribution of Cd(2+) accessibility is consistent with an alpha-helical structure of M2. The apparent surface of reactivity is broad, and the most reactive residues correspond to the solvent-accessible residues in the bacterial KcsA channel crystal structure. In several mutants, single channel measurements indicated that inhibition occurred by a single transition from the open state to a zero-conductance state. Analysis of currents expressed from mixtures of control and L164C mutant subunits indicated that at least three cysteines are required for coordination of the Cd(2+) ion. Application of phosphatidylinositol 4,5-diphosphate to inside-out membrane patches stabilized the open state of all mutants and also reduced cadmium sensitivity. Moreover, the Cd(2+) sensitivity of several mutants was greatly reduced in the presence of inhibitory ATP concentrations. Taken together, these results are consistent with state-dependent accessibility of single Cd(2+) ions to coordination sites within a relatively narrow inner vestibule.  相似文献   

16.
We determined whether flumazenil mimics ischemic preconditioning in chick cardiomyocytes and examined the role of intracellular reactive oxygen species (ROS) and ATP-dependent potassium (K(ATP)) channels in mediating the effect. Chick ventricular myocytes were perfused with a balanced salt solution in a flow-through chamber. Cell viability was quantified using propidium iodide, and ROS generation was assessed using the reduced form of 2',7'-dichlorofluorescin (DCFH). Cells were exposed to 1 h of simulated ischemia and 3 h of reoxygenation. Preconditioning was initiated with 10 min of ischemia followed by 10 min of reoxygenation. Alternatively, flumazenil was added to the perfusate for 10 min and removed 10 min before the start of ischemia. Flumazenil (1 and 10 microM) and preconditioning reduced cell death [54 +/- 5%, n = 3; 26 +/- 4%, n = 6 (P < 0.05); and 20 +/- 2%, n = 6 (P < 0.05), respectively, vs. 57 +/- 7%, n = 10, in controls] and increased DCFH oxidation (an index of ROS production) [0.35 +/- 0.11, n = 3; 2.64 +/- 0.69, n = 8 (P < 0.05); and 2.46 +/- 0.52, n = 6 (P < 0.05), respectively, vs. 0.26 +/- 0.05, n = 9, in controls]. Protection and increased ROS signals with flumazenil (10 microM) were abolished with the thiol reductant N-(2-mercaptopropionyl)-glycine (2-MPG, 800 microM), an antioxidant (cell death: 2-MPG + flumazenil, 55 +/- 12%, n = 6; ROS signals: 2-MPG + flumazenil, 0.11 +/- 0.19, n = 6). Treatment with 5-hydroxydecanoate (1 mM), a selective mitochondrial K(ATP) channel antagonist, abolished its protection. These results demonstrate that flumazenil mimics preconditioning to reduce cell death in myocytes. ROS signals with the resultant mitochondrial K(ATP) channel activation are important components of the intracellular signaling pathway of flumazenil.  相似文献   

17.
Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K(+) (K(ATP)) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, K(ATP) channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how K(ATP) channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the K(ATP) channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with K(ATP) channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal K(ATP) channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of K(ATP) channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of K(ATP) channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders.  相似文献   

18.
Ischemic preconditioning (IPC) is the phenomenon whereby brief periods of ischemia have been shown to protect the myocardium against a sustained ischemic insult. The result of IPC may be manifest as a marked reduction in infarct size, myocardial stunning, or incidence of arrhythmias. While many substances and pathways have been proposed to play a role in the signal transduction mediating the cardioprotective effect of IPC, overwhelming evidence indicates an intimate involvement of the ATP-sensitive potassium channel (KATP channel) in this process. Initial hypotheses suggested that the surface or sarcolemmal KATP (sarcKATP) channel mediated the cardioprotective effects of IPC. However, much research has subsequently supported a major role for the mitochondrial KATP channel (mitoKATP) as the one involved in IPC-mediated cardioprotection. This review presents evidence to support a role for the sarcKATP or the mitoKATP channel as either triggers and/or downstream mediators in the phenomenon of IPC.  相似文献   

19.
ATP-sensitive K+ (KATP) channels that are gated by intracellular ATP/ADP concentrations are a unique subtype of potassium channels and play an essential role in coupling intracellular metabolic events to electrical activity. Opening of KATP channels during energy deficits in the CNS induces efflux of potassium ions and in turn hyperpolarizes neurons. Thus, activation of KATP channels is thought to be able to counteract excitatory insults and protect against neuronal death. In this review, we bring together recent studies about what kinds of molecules are needed to build and regulate arrays of KATP channel functions in the CNS neurons. We propose a model to explain how KATP channel activation regulates glutamate release from the pre-synaptic terminals and how this regulation protects against ischemic neuronal injury and epilepsy.  相似文献   

20.
Whole cell, voltage clamp experiments were performed in vesicles derived from frog skeletal muscle plasma membranes to characterize the influence of ATP on the kinetic properties of fast inactivating K(+) currents (I(A)). I(A) was recorded in ATP-free solutions. Peak I(A) decayed with a time constant of 27 ms at large depolarizations. Steady state inactivation reached half maximal values at -66 mV. In the presence of ATP, these values were 196 ms and -41 mV, respectively, indicating a major effect of ATP on inactivation. In contrast, activation of I(A) was unaffected by ATP. The protein kinase C (PKC) inhibitors, H7 and staurosporine, greatly prevented the effects of ATP on inactivation. Inactivation remained unchanged by the protein kinase A inhibitor HA1004 or by the catalytic subunit of cAMP protein kinase. We conclude that ATP decreases inactivation of skeletal muscle I(A) and that this effect may be mediated by protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号