首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans , oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene ( ZmLOX3 ) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild-type A. nidulans , and into a Δ ppoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2–3 expression was decreased when infected by A. nidulans Δ ppo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross-talk in the Aspergillus –seed pathosystem.  相似文献   

2.
Aspergillus flavus differentiates to produce asexual dispersing spores (conidia) or overwintering survival structures called sclerotia. Results described here show that these two processes are oppositely regulated by density-dependent mechanisms and that increasing the cell density (from 101 to 107 cells/plate) results in the lowest numbers of sclerotial and the highest numbers of conidial. Extract from spent medium of low-cell-density cultures induced a high-sclerotium-number phenotype, whereas high-cell-density extract increased conidiation. Density-dependent development is also modified by changes in lipid availability. Exogenous linoleic acid increased sclerotial production at intermediate cell densities (104 and 105 cells/plate), whereas oleic and linolenic acids inhibited sclerotium formation. Deletion of Aflox encoding a lipoxygenase (LOX) greatly diminished density-dependent development of both sclerotia and conidia, resulting in an overall increase in the number of sclerotia and a decrease in the number of conidia at high cell densities (>105 cells/plate). Aflox mutants showed decreased linoleic acid LOX activity. Taken together, these results suggest that there is a quorum-sensing mechanism in which a factor(s) produced in dense cultures, perhaps a LOX-derived metabolite, activates conidium formation, while a factor(s) produced in low-density cultures stimulates sclerotium formation.  相似文献   

3.
To date, no demonstration of a direct correlation between the presence of mycoviruses and the quantitative or qualitative modulation of mycotoxins has been shown. In our study, we transfected a virus-free ochratoxin A (OTA)-producing isolate of Aspergillus ochraceus with purified mycoviruses from a different A. ochraceus isolate and from Penicillium aurantiogriseum. Among the mycoviruses tested, only Aspergillus ochraceus virus (AoV), a partitivirus widespread in A. ochraceus, caused a specific interaction that led to an overproduction of OTA, which is regulated by the European Commission and is the second most important contaminant of food and feed commodities. Gene expression analysis failed to reveal a specific viral upregulation of the mRNA of genes considered to play a role in the OTA biosynthetic pathway. Furthermore, AoOTApks1, a polyketide synthase gene considered essential for OTA production, is surprisingly absent in the genome of our OTA-producing isolate. The possible biological and evolutionary implications of the mycoviral regulation of mycotoxin production are discussed.  相似文献   

4.
Ochratoxin A (OTA) is one of the most widespread mycotoxins, and is produced by several Aspergillus or Penicillium species. Human exposure to OTA is mainly by intake of contaminated food, with cereal products, followed by coffee and red wine as the main sources of OTA. In this study, the OTA production of four ochratoxigenic fungi (two Aspergillus and two Penicillium species) was investigated in four different media, i.e. wheat and coffee model media as food-based media and two standard laboratory media (malt extract glucose agar, MEA and yeast extract sucrose agar, YES). Colony growth was documented and OTA concentrations in cultures were determined at day 2, 4 and 8 of incubation at 25°C by high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). OTA production clearly depended upon time of incubation, fungal species, and medium composition. On coffee based medium, moderate OTA levels were produced by A. ochraceus BFE635 (9.8 μg/g) and by A. niger BFE632 (10.6 μg/g) on day 8 of incubation. In wheat-based medium, these strains produced much more OTA than in coffee. The highest OTA concentration (83.8 μg/g on day 8) was formed by A. ochraceus BFE635 followed by the other Aspergillus niger BFE632 (49 μg/g). Lower OTA levels were produced by P. verrucosum BFE550 and P. nordicum BFE487, in both wheat and in YES medium, whilst OTA was hardly detectable in coffee and in MEA in case of P. nordicum. Colony growth of the tested strains on different media was not indicative of OTA production. Guttation droplets developed on wheat-based medium with the Aspergillus strains within a week, and this phenomenon coincided with the high OTA amounts formed by these species. Results from this study add to our knowledge on the behaviour of ochratoxigenic fungal species when cultured on food based media.  相似文献   

5.
An extensive survey of filamentous fungi isolated from wheat grown and consumed in Lebanon and their capacity to produce aflatoxin B1 (AFB1) and ochratoxin A (OTA) was conducted to assess fungi potential for producing these toxins in wheat. From the 468 samples of wheat kernel, collected at preharvest stage from different locations during 2008 and 2009 cultivation seasons, 3,260 fungi strains were isolated with 49.4% belonging to Penicillium spp. and 31.2% belonging to Aspergillus spp. Penicillium spp. was detected on wheat samples with a high amount of P. verrucosum (37.0%). Among the different Aspergillus spp. isolated, A. niger aggregate was predominant and constituted 37.3%. whereas the isolation rate of A. flavus and A. ochraceus was 32.2 and 25.6%, respectively. The ability to produce OTA and AFB1 by isolates belonging to Aspergillus spp. and Penicillium spp. was analyzed by high performance liquid chromatography with fluorescence detector (HPLC-FLD). It was found that 57.0% of Penicillium spp. and 80% of A. ochraceus isolates tested produced OTA, respectively, at maximum concentrations of 53 and 65 μg/g CYA. As for the aflatoxinogenic ability, 45.3% of A. flavus produced AFB1, with maximum concentration of 40 μg/g CYA. A total of 156 wheat samples were analyzed for the levels of OTA and AFB1 by HPLC-FLD. The results showed that 23.7% were contaminated with OTA, at a concentration higher than 3 μg/kg and 35.2% of these samples were contaminated with AFB1 at concentration higher than 2 μg/kg. The risks originating from toxin levels in wheat produced in Lebanon should be monitored to prevent their harmful effects on public health.  相似文献   

6.
Toxigenic and non-toxigenic black aspergilli belonging to theAspergillus niger aggregate and toA. carbonarius were compared to each other and to strains of other species by DNA fingerprinting. AFLPs showed a clear separation ofA. niger andA. carbonarius. However, no clear correlation between the genetic similarity of the strains and the ability to produce ochratoxin A (OTA) was detected. Based on AFLP, marker sequences were chosen for the construction of SCAR-PCR primers for the detection ofA. carbonarius. A similar approach was used forA. ochraceus, another fungus of concern regarding ochratoxin A contamination of coffee. Cluster analysis ofA. ochraceus isolates mainly from Brazilian coffee showed a very close genetic similarity. Three species specific primer pairs were developed and one of these was used for the PCR and realtime PCR (RT-PCR) based detection of the mould in green coffee.A. ochraceus was specifically and rapidly detected and quantified in green coffee. A positive correlation between the amount of DNA and OTA content was established.  相似文献   

7.
Chloroplastic LOXs are implicated in the biosynthesis of oxylipins like jasmonic acid and C6 volatiles among others. In this study, we isolated the cDNA of a novel chloroplast-targeted Phaseolus vulgaris LOX, (PvLOX6). This gene is highly induced after wounding, non-host pathogen infection, and by signaling molecules as H2O2, SA, ethylene and MeJA. The phylogenetic analysis of PvLOX6 showed that it is closely related to chloroplast-targeted LOX from potato (H1) and tomato (TomLOXC); both of them are implicated in the biosynthesis of C6 volatiles. Induction of PvLOX6 mRNA by wounding ethylene and jasmonic acid on the one side, and non-host pathogen, salicylic acid on the other indicates that common bean uses the same LOX to synthesize oxylipins in response to different stresses. PvLOX6 accession number: EF196866.  相似文献   

8.
Oxylipins are a newly emerging group of signals that serve defence roles or promote virulence. To identify specific host and fungal genes and oxylipins governing the interactions between maize and Fusarium verticillioides, maize wild‐type and lipoxygenase3 (lox3) mutant were inoculated with either F. verticillioides wild‐type or linoleate‐diol‐synthase 1‐deleted mutant (ΔFvlds1D). The results showed that lox3 mutants were more resistant to F. verticillioides. The reduced colonization on lox3 was associated with reduced fumonisin production and with a stronger and earlier induction of ZmLOX4, ZmLOX5 and ZmLOX12. In addition to the reported defence function of ZmLOX12, we showed that lox4 and lox5 mutants were more susceptible to F. verticillioides and possessed decreased jasmonate levels during infection, suggesting that these genes are essential for jasmonic acid (JA)‐mediated defence. Oxylipin profiling revealed a dramatic reduction in fungal linoleate diol synthase 1 (LDS1)‐derived oxylipins, especially 8‐HpODE (8‐hydroperoxyoctadecenoic acid), in infected lox3 kernels, indicating the importance of this molecule in virulence. Collectively, we make the following conclusions: (1) LOX3 is a major susceptibility factor induced by fungal LDS1‐derived oxylipins to suppress JA‐stimulating 9‐LOXs; (2) LOX3‐mediated signalling promotes the biosynthesis of virulence‐promoting oxylipins in the fungus; and (3) both fungal LDS1‐ and host LOX3‐produced oxylipins are essential for the normal infection and colonization processes of maize seed by F. verticillioides.  相似文献   

9.
In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans, oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene (ZmLOX3) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild-type A. nidulans, and into a DeltappoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2-3 expression was decreased when infected by A. nidulansDeltappo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross-talk in the Aspergillus-seed pathosystem.  相似文献   

10.
Farm workers are often exposed to high concentrations of airborne organic dust and fungal conidia, especially when working with plant materials. The purpose of this investigation was to study the possibility of exposure to the mycotoxin ochratoxin A (OTA) through inhalation of organic dust and conidia. Dust and aerosol samples were collected from three local cowsheds. Aerosol samples for determination of total conidia and dust concentrations were collected by stationary sampling on polycarbonate filters. Total dust was analysed by gravimetry, and conidia were counted using scanning electron microscopy. A method was developed for extraction and determination of OTA in small samples of settled dust. OTA was extracted with a mixture of methanol, chloroform, HCI, and water, purified on immunoaffinity column, and analysed by ion-pair HPLC with fluorescence detection. Recovery of OTA from spiked dust samples (0.9–1.0 μg/kg) was 74% (quantitation limit 0.150 μg/kg). OTA was found in 6 out of 14 settled dust samples (0.2–70 μg/kg). The total concentration of airborne conidia ranged from < 1.1 × 104 to 3.9 × 155 per m3, and the airborne dust concentration ranged from 0.08 to 0.21 mg/m3. Conidia collected from cultures of Penicillium verrucosum and Aspergillus ochraceus contained 0.4–0.7 and 0.02–0.06 pg OTA per conidium, respectively. Testing of conidial extracts from these fungi in a Bacillus subtilis bioassay indicated the presence of toxic compounds in addition to OTA. The results show that airborne dust and fungal conidia can be sources of OTA. Peak exposures to airborne OTA may be significant, e.g., in agricultural environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 °C at 70–80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 °C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.  相似文献   

12.
The filamentous fungus Penicillium paxilli contains two distinct geranylgeranyl diphosphate (GGPP) synthases, GgsA and GgsB (PaxG). PaxG and its homologues in Neotyphodium lolii and Fusarium fujikuroi are associated with diterpene secondary metabolite gene clusters. The genomes of other filamentous fungi including Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae and Fusarium graminearum also contain two or more copies of GGPP synthase genes, although the diterpene metabolite capability of these fungi is not known. The objective of this study was to understand the biological significance of the presence of two copies of GGPP synthases in P. paxilli by investigating their subcellular localization. Using a carotenoid complementation assay and gene deletion analysis, we show that P. paxilli GgsA and PaxG have GGPP synthase activities and that paxG is required for paxilline biosynthesis, respectively. In the ΔpaxG mutant background ggsA was unable to complement paxilline biosynthesis. A GgsA-EGFP fusion protein was localized to punctuate organelles and the EGFP-GRV fusion protein, containing the C-terminus tripeptide GRV of PaxG, was localized to peroxisomes. A truncated PaxG mutant lacking the C-terminus tripeptide GRV was unable to complement a ΔpaxG mutant demonstrating that the tripeptide is functionally important for paxilline biosynthesis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Cereals and cereal- derived products constitute the base of human and animal feeding in South American countries. This review attempts to give an overview of the ochratoxin A (OTA) occurrence and potential sources of OTA contamination in those products. The environmental conditions as humidity and temperature in the colonization of the substrates by Aspergillus section Nigri isolated from corn kernels were also discussed. The available information on the ochratoxigenic mycoflora and OTA presence in corn, corn based food and feed is limited. Only few surveys have been carried out in Argentina, Ecuador and Brazil; which showed that Aspergillus niger aggregate and A. ochraceus species would be the main source of OTA. It’s possible to emphasize that, the species A. carbonarius has not been isolated from these substrates and Penicillium verrucosum was isolated only from pig feeds of Argentinean samples in low percentage. Studies about the ecophysiology of ochratoxigenic fungi and OTA occurrence are in progress in Latin America to reduce the impact of this toxin in the food chain. Carina E. Magnoli, Stella M. Chiacchiera, Ana M. Dalcero—Members of the Research Career Andrea L. Astoreca—Fellowship of CONICET  相似文献   

14.
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150–250 µL/L with fumigation and 250–500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥75 µg/mL and ≥150 µg/mL respectively, while natural cinnamaldehyde couldn’t fully inhibit OTA production at ≤200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.  相似文献   

15.
Summary Two classes of lipoxygenase (LOX) cDNAs, designated loxA and loxB, were isolated from soybean. A third lipoxygenase cDNA, loxP1, was isolated from pea. The deduced amino acid sequences of loxA and loxB show 61–74% identity with those of soybean seed LOXs. loxA and loxB mRNAs are abundant in roots and non-growing regions of seedling hypocotyls. Lower levels of these mRNAs are found in hypocotyl growing regions. Exposure of soybean seedlings to water deficit causes a rapid increase in loxA and loxB mRNAs in the elongating hypocotyl region. Similarly, loxP1 mRNA levels increase rapidly when pea plants are wilted. loxA and loxB mRNA levels also increase in wounded soybean leaves, and these mRNAs accumulate in soybean suspension cultures treated with 20 M methyl jasmonate. These results demonstrate that LOX gene expression is modulated in response to water deficit and wounding and suggest a role for lipoxygenase in plant responses to these stresses.  相似文献   

16.
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 °C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 °C and pH 6.5 for A. terricola, and 65 °C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 °C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t 50 of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4–3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and β-xylosidase were detected which might act synergistically with xylanase.  相似文献   

17.
Summary The moulds Aspergillus parasiticus (aflatoxins B1, B2, G1, G2, and M1), A. ochraceus (ochratoxin A) and Penicillium chrysogenum (citrinin) were grown on whole wheat bread either in the presence or absence of oxygen. In the presence of oxygen, both A. parasiticus and A. ochraceus developed dense colonies and formed considerable amounts of mycotoxins whereas Penicillium chrysogenum only grew and produced citrinin on the surface of the bread. In the absence of oxygen fungal growth did not occur and most of the toxins were undetectable even in regions of bread immediately adjacent to the moulds although a very slight diffusion of the aflatoxins B1 and G1 through 1 cm was observed. It is concluded that diffusion of the tested mycotoxins from hyphae into bread is not a problem for food safety.  相似文献   

18.
Lee HB  Magan N 《Mycopathologia》1999,146(1):43-47
The effect of water availability (water activity,aw; 0.995–0.90) and temperature (18–30 °) on in vitro interactions between an ochratoxin producing strain of Aspergillus ochraceus and six other spoilage fungi was assessed in dual culture experiments on a maize meal-based agar medium. Inprimary resource capture of nutrient substrate, A. ochraceus was dominant against many of the interacting species, being able to overgrow and replace A. candidus, and sometimes A. flavus and the Eurotium spp. regardless of aw or temperature. However, with freely available water (0.995 aw) A. alternata and A. niger were dominant, with mutual antagonism between A. ochraceus and A. flavus at 25–30 °C. In the driest conditions tested (0.90 aw) there was also mutual antagonism between A. ochraceus and the two Eurotium spp. Overall, under allconditions tested the Index of Dominance for A. ochraceus was much higher than for other competing species combined suggesting that A. ochraceus wasa good competitive colonist able to replace a numberof other species. However, the growth rate ofA. ochraceus was modified and decreased by the interaction with competitors. Interaction between A. ochraceus and species such as A. alternata (18°C/0.995) and Eurotium spp. (0.995–0.95 and 25–30 °C) resulted in a significant stimulation of ochratoxin production. Theresults are discussed in relation to the effect that environmental factors have on the possible competitiveness of A. ochraceus in the maizegrain ecosystem and the role of ochratoxin in nicheexclusion of competitors. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The ability of ozone gas to reduce food spoilage is relatively well documented, but the developmental effects of the gas on food spoilage fungi are not well known. In this study two model aspergilli, Aspergillus nidulans and Aspergillus ochraceus were used to study the effects of ozone on spore germination, sporulation and biomass production. These effects were examined under three levels of ozone; two high level ozone exposures (200 and 300 μmol mol−1) and one low level exposure (0.2 μmol mol−1). The two species behaved noticeably different to each other. Ozone was more effective in reducing growth from spore inocula than mycelia. No spore production could be detected in A. nidulans exposed to continuous low level O3, whereas the same treatment reduced spores produced in A. ochraceus by 94%. Overall the work suggests that ozone exposure is an effective method to prevent spread of fungal spores in a food storage situation.  相似文献   

20.
The phenolic antioxidants, gallic acid, vanillic acid, protocatechuic acid, 4-hydroxybenzoic acid, catechin, caffeic acid, and chlorogenic acid were studied for their effects on ochratoxin A (OTA) production and fungal growth of ochratoxigenic Aspergilli. Of the 12 strains tested, which included A. alliaceus, A. lanosus, A. ochraceus, A. albertensis, A. melleus, A. sulphureus, A. carbonarius, A. elegans, and A. sclerotiorum, the greatest inhibition of OTA production was seen in A. sulphureus, A. elegans, and A. lanosus. Vanillic acid and 4-hydroxybenzoic acid were the most inhibitory to both OTA production and growth of most of the strains tested. However, A.␣ochraceus was not inhibited by either compound, and A. carbonarius was not inhibited by vanillic acid. The effect of each compound on OTA production and growth differed among strains and generally was variable, suggesting that species-specific OTA production and response to phenolic compounds may be influenced by different ecological and developmental factors. In addition, inhibition of OTA production by antioxidant compounds may be useful in determining biosynthetic and regulatory genes involved in both OTA production and stress response in ochratoxigenic Aspergilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号