首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we explore the potential of the plasmonic metal–insulator–metal (MIM) periodically graded structure. Based on the coupled modes approach, an analytical model has been observed for the surface plasmon polariton (SPP) propagation. The band modes of SPP can be also supported by the MIM structure and we have analyzed the strong dependence of band width on structure parameters. The obtained analytical expressions allow one to easily choose the structure parameters for the desired band width.  相似文献   

2.
In this paper, a plasmonic-photonic nanostructure has been introduced for efficient unidirectional coupling of free-space radiation to surface plasmon polariton (SPP) waves under normal illumination on a subwavelength slit. The structure consists of a conventional metallic slit-groove nanostructure integrated with a plasmonic waveguide to support SPP waves along the desired direction with a remarkable lateral confinement. The unidirectional coupling is achieved by using an integrated plasmonic distributed reflector designed under Bragg condition. This reflector basically distributes part of the light coupled through the slit into the SPP modes of the waveguide. Numerical simulations show that up to 26 % of the normally incident light couples to the transversely localized field of the surface plasmon. In addition, the ratio of mode current density of the surface plasmon, launched in the desired direction, to that in the opposite direction can reach about 23 times. This structure shows a 2.5-fold improvement in coupling efficiency relative to a standard slit-groove structure. Also, the transmission distance for the new nanostructure is shown to be more than 8 times greater than that of the standard nanostructure.  相似文献   

3.
Kang  Guoguo  Wang  Jue  Li  Peng  Zang  Jinliang  Meng  Xiandong  Tan  Xiaodi 《Plasmonics (Norwell, Mass.)》2016,11(4):1169-1174
Plasmonics - Surface plasmon polariton (SPP) and cavity modes supported by the plasmonic gratings are often of hybrid nature in ruling light-nanostructure interactions. The coupling of incident...  相似文献   

4.
Based on a coupled meta-atom and metal-nonlinear dielectric-metal nanocavity, nonlinear all-optical strong coupling switches are proposed and numerically investigated. In the absence of the external pumping light, the resonances of the meta-atom are continuously tuned across the one of the nanocavity by changing the size of the meta-atom. The meta-atomic electric dipole and quadrupole interaction with the plasmonic nanocavity is obtained. The characteristic anticrossing behaviors manifest the occurrence of the strong coupling. With the resonance of the meta-atom being tuned to the one of the nanocavity, we dynamically tune the coupled strength of the system by changing intensity (power) of the pumping light and realize the transition from the strong coupling regime to the weak one. This means that this system can be used as an on/off switch in which the strong coupling can be on/off with an external control light, and the on/off states correspond to strong/weak coupling regime, respectively. Such a strong coupling all-optical switching is of considerable interest for applications in nanoscale plasmonic circuits.  相似文献   

5.
The surface plasmon polariton (SPP) coupling and enhancement in silver nanowire–nanoantenna structure is proposed and simulated by using finite difference time domain method. The results demonstrate that three-arm antenna can effectively enhance the coupling efficiency at the incident end and the SPP field intensity at the emission end. The enhancement factor, which is defined as the ratio of the SPP field intensity at the emission end with and without the three-arm antenna, for the various antenna arm lengths and incident wavelengths under different incident angles are calculated. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.  相似文献   

6.
Metal-capped microdisk cavity supporting surface plasmon polaritons (SPP)-guided whispering gallery mode (WGM) can achieve higher cavity factor Q than traditional microdisk cavity in sub-wavelength dimensions. We have numerically analyzed the limiting factors on Q using finite difference time domain method. The Q of SPP-guided WGM is primarily limited by the loss of metal. A thin metal-sandwiched microdisk cavity supporting long-range surface plasmon polariton mode was proposed to reduce the metal loss. The proposed cavities have been shown to increase cavity Q by more than 15-fold and reduce threshold gain by more than threefold as opposed to traditional microdisk cavities.  相似文献   

7.
A model of a multi-band-stop filter is proposed for single-photon transport, using a one-dimensional waveguide side coupled with a series of optical cavities. Its transmission behavior is theoretically studied by a real-space model Hamiltonian and is found to depend on cavity mode frequencies, cavity relative phases, as well as cavity number and the coupling strength between the waveguide and the optical cavities. With proper cavity-mode frequencies and relative phases, the proposed model shows multi-band-stop regions and a rectangular transmission spectrum. Based on these phenomena, optical filters with more than one band-stop regions are simulated with gold material in the THz and communication band.  相似文献   

8.
We report a 3D plasmonic nanostructure having an extraordinary optical transmission due to localized surface plasmon (LSP) coupling between nanoholes and nanodisks. The nanostructure contains a free-standing gold nanohole array (NHA) film above a cavity and an array of nanodisks at the bottom of the cavity that is aligned with the NHA. For the device, the LSP-mediated resonance position was dependent on the hole and nanodisk diameter as well as the separation distance. Also, the effect of LSP coupling between each hole and corresponding nanodisk became negligible for cavities deeper than 200 nm as observed as a disappearance of the LSP resonance. The greatest LSP resonance transmission and the highest electric field intensity were observed for the structure with the shallowest cavity. In addition, the structure had high surface plasmon resonance sensitivity and may have potential for surface-enhanced Raman spectroscopy and optical trapping applications.  相似文献   

9.
In allusion to special modes supported by surface plasmon polariton (SPP) waveguides, explicit expression for mode coupling coefficient which plays a central role in coupled mode theory is firstly redefined by adding the longitudinal electric field component. The mode coupling coefficients calculated by the proposed formula improve greatly compared with the coupled mode theory suited to conventional optical waveguides, and reasonable explanations from the point of view of physics and mathematics have been given. Afterwards, the coupling lengths, the transmission lengths, the normalized power exchanges, and the cross talk performances of adjacent parallel SPP waveguides with varying waveguide separation distances D and waveguide lengths L are investigated at telecom wavelength. The results are encouraging as they indicate that the coupled mode theory is developed in a self-consistent manner by retaining the longitudinal electric field component in the derivation and neglecting it only when the waveguides structure satisfies the weakly guiding situations. As a result, the new mode coupling coefficient formula for SPP waveguides considered in this paper is an important complement in the theory of SPP waveguides.  相似文献   

10.
All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.  相似文献   

11.

We study the polarization properties of suspended core microstructured optical fibers (SC-MOFs) with hexagonal lattice structure and high air-filling fraction having a single gold-filled hole along the horizontal axis. The interaction between the core-guided light and metal leads to surface plasmon resonance (SPR) at particular frequencies where the phase-matching condition is satisfied. We observe from the modal analysis that MOFs with high air-filling fraction offer the possibility of coupling of the fundamental mode with the first-order surface plasmon polariton (SPP) mode. With the increase in the suspension factor (SF), the fundamental mode couples with higher order SPP modes and the coupling strength also enhances. It also leads to an increase in modal birefringence. Reduction in beat length by an order of magnitude compared to the reported values is being reported for the first time to our knowledge. We have achieved the lowest beat length of 0.0105 mm at 1 μm wavelength for the structure having d/Λ = 0.85 and SF = 1.65. The results show that such plasmonic SC-MOFs may perform as efficient in-fiber polarizers and polarization filters.

  相似文献   

12.
We discuss the interplay between surface plasmon polaritons (SPPs) and localized shape resonances (LSRs) in a plasmonic structure working as a photo-coupler for a GaAs quantum well photodetector. For a targeted electronic inter-subband transition inside the quantum well, maximum photon absorption is found by compromising two effects: the mode overlapping with incident light and the lifetime of the resonant photons. Under the optimal conditions, the LSR mediates the coupling between the incident light and plasmonic structure while the SPP provides long-lived resonance which is limited ultimately by metal loss. The present work provides insight to the design of plasmonic photo-couplers in semiconductor optoelectronic applications.  相似文献   

13.
Based on a metal-dielectric-metal (MDM) plasmonic waveguide side coupled with a single cavity, we rebuild such resonator system by cascading double side-coupled cavities to obtain flat-top reflection response over a frequency bandwidth. The increased coherent scattering path provides an additional freedom to engineer the complex interference between the cavity modes and the waveguide mode. By decomposing the compound cavity modes into two decoupled resonances, we analyze the conditions to realize flat-top reflection response. The physics behind the flat-top reflection characteristics is found to be originated from the interference interaction between the two cavities through examining the cavity excitations and the reflected power response. Temporal coupled-mode theory and finite difference time domain method are utilized as theoretical and numerical tools which convince each other.  相似文献   

14.
We propose a compact plasmonic structure comprising a metal-dielectric-metal (MDM) waveguide coupled with a side cavity and groove resonators. The proposed system is investigated by the finite element method. Simulation results show that the side-coupled cavity supports a local discrete state and the groove provides a continuous spectrum, the interaction between them, gives rise to the Fano resonance. The asymmetrical line shape and the resonant wavelength can be easily tuned by changing the geometrical parameters of the structure. Moreover, we can extend this plasmonic structure by the double side-coupled cavities to gain the multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of ~1900 nm/RIU and a figure of merit of about ~3.8?×?104, which can find wide applications for nanosensors.  相似文献   

15.
The resonant mode characteristics of the nanoscale surface plasmon polaritons (SPP) waveguide filter with rectangle cavity are studied theoretically. By using the finite difference time domain method, both the band-stop- and band-pass-type rectangle SPP filters are analyzed. The results show that the whispering gallery mode (WGM) and the Fabry–Perot (FP) mode can be supported by the rectangle SPP resonator. Furthermore, both traveling-wave mode and standing-wave mode can be realized by the WGM, while only standing-wave mode can be introduced by the FP mode. The traveling-wave mode can only be realized by the square-shaped SPP resonator, and the traveling-wave mode is splitted into two standing-wave modes by transforming the cavity shape from square to rectangle. Also, the effects of the cavity shape, cavity size, and coupling gap size on the transmission spectra of the SPP resonators are analyzed in detail. This simple SPP waveguide filter is very promising for the high-density SPP waveguide integrations.  相似文献   

16.
For many years, the search for efficient surface plasmon polariton (SPP) excitation mechanisms has been a recurring matter in the development of compact plasmonic devices. In this work, we excited SPPs illuminating a subwavelength metallic ridge with a focused spot to characterize the coupling efficiency by varying the incidence angle of the excitation beam from ??50 to 50°. The intensity distribution of the excited SPPs was measured using leakage radiation microscopy to determine the relative coupling efficiency in the wavelength interval from 740 to 840 nm. We modeled the excitation efficiency as a function of the incidence angle using a simple analytical diffraction model. Two ridges of different width (200 and 500 nm) were used to compare results and validate the model. The experimental results show a higher coupling efficiency at oblique incidence, where the coupling was enhanced by factors of 2× for the 500-nm-wide ridge, and 3× for the 200-nm-wide ridge, as well as unidirectional SPP excitation. The experimental results are in good agreement with the proposed model.  相似文献   

17.

We investigate the properties of entanglement between two quantum dots (QDs) with an azimuthal angle difference in two different plasmonic waveguide systems where a cavity coupled to the QDs is included or not. The real space formalism and the concurrence are used in solving the eigenvalue equation and calculating the entanglement, respectively. We analyze the influence of azimuthal angle difference on the entanglement and propose several effective ways to achieve high entanglement by adjusting the detuning, the QD-cavity coupling strength, and so on. Moreover, comparing the entanglement in the two models, we demonstrate that the addition of cavity can improve the entanglement of two QDs.

  相似文献   

18.
This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.  相似文献   

19.

Surface plasmon polariton (SPP) waves are the most extensively studied waves among various types of surface waves because they are easy to excite and have been used in many optical applications particularly for plasmonic communication, sensing, and harvesting solar energy. In all these applications, especially on-chip plasmonic communication, scattering can be an important issue to deal with. Therefore, this paper aimed to theoretically inspect the scattering pattern of SPP waves from a perfect electric conductor (PEC) cylindrical scatterer. The cylindrical wave approach is used to solve the scattering problem by a cylindrical object placed below a metallic layer. The scattering is investigated thoroughly by changing the size of the scatterer and its distance from the interface along which the SPP wave is excited. As the size of the scatterer increases, the scattering increases significantly. On the other hand, when the distance of the scatterer from the interface is increased, the scattered field becomes small. Two-dimensional field maps are produced for the incident angle at which SPP is excited. Numerical results are also presented for other incident angles to make a comparison. Furthermore, the forward and backward far-fields are significantly enhanced if the SPP wave is scattered in comparison with when the SPP wave is not present.

  相似文献   

20.
Liu  Qiong  Liu  Mingwei  Zhan  Shiping  Wu  Lingxi  Xie  Suxia  Chen  Zhaohui  Zhang  Yichen 《Plasmonics (Norwell, Mass.)》2019,14(4):1005-1011

In this paper, a graphene strip is introduced into a metal-insulator-metal (MIM)-integrated square cavity hybrid structure; the transmission spectra are theoretically investigated by the finite different time domain (FDTD) methods. An asymmetric Fano resonance dip that has high figure of merit (FOM) value appears in the transmission band. According to the multimode interference coupled mode theory (MICMT) analytical method, the Fano resonance originates from the coherent coupling between TM10 cavity magnetic mode and graphene plasmonic resonance electric mode. The center wavelength, full width at half maximum (FWHM), and FOM value of the Fano resonance can be tuned dynamically by altering the Fermi level of the graphene. Through breaking the symmetry of the hybrid structure or introducing double graphene strips with different Fermi level into hybrid structure, double Fano resonance are realized. This study can provide some theoretical basis and design reference for designing ultrahigh sensitivity plasmonic sensor.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号