首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Costimulatory molecules, termed B7.1 and B7.2, are present on the surfaces of APC and are important for the activation of T lymphocytes specific for both foreign Ags and autoantigens. We have examined the role of B7 costimulation in the MRL-lpr/lpr murine model of human systemic lupus erythematosus. MRL-lpr/lpr mice receiving both anti-B7.1 and anti-B7.2 Abs expressed significantly lower anti-small nuclear ribonucleoprotein particles (snRNP) and anti-dsDNA autoantibodies than did untreated mice. Anti-B7.2 Ab treatment alone inhibited anti-dsDNA autoantibody expression while having no effect on anti-snRNP autoantibody expression. Anti-B7.1 Ab treatment alone did not change the expression of either anti-snRNP or anti-dsDNA autoantibodies. Parallel studies performed in MRL-lpr/lpr mice genetically deficient in either B7.1 or B7.2 expressed autoantibody profiles comparable to those found in wild-type MRL-lpr/lpr mice. However, B7.1-deficient MRL-lpr/lpr mice exhibited distinct and more severe glomerulonephritis while B7.2-deficient MRL-lpr/lpr mice had significantly milder or absent kidney pathology as compared with age-matched wild-type mice. These studies indicate that each B7 costimulatory signal may control unique pathological events in murine systemic lupus erythematosus that may not always be apparent in autoantibody titers alone.  相似文献   

2.
Abs to DNA and nucleoproteins are expressed in systemic autoimmune diseases, whereas B cells producing such Abs are edited, deleted, or inactivated in healthy individuals. Why autoimmune individuals fail to regulate is not well understood. In this study, we investigate the sources of anti-dsDNA B cells in autoimmune transgenic MRL-lpr/lpr mice. These mice are particularly susceptible to lupus because they carry a site-directed transgene, H76R that codes for an anti-DNA H chain. Over 90% of the B cells are eliminated in the bone marrow of these mice, and the few surviving B cells are associated with one of two Vkappa editors, Vkappa38c and Vkappa21D. Thus, it appears that negative selection by deletion and editing are intact in MRL-lpr/lpr mice. However, a population of splenic B cells in the H76R MRL-lpr/lpr mice produces IgG anti-nuclear Abs, and these mice have severe autoimmune organ damage. These IgG Abs are not associated with editors but instead use a unique Vkappa gene, Vkappa23. The H76R/Vkappa23 combination has a relatively high affinity for dsDNA and an anti-nuclear Ab pattern characteristic of lupus. Therefore, this Vkappa gene may confer a selective advantage to anti-DNA Abs in diseased mice.  相似文献   

3.
Natural autoantibodies (NAA) and their associated B cells constitute a substantial proportion of the normal Ab and B cell repertoire. They often have weak reactivity toward a variety of self-Ags such as DNA, nucleoproteins, and phospholipids. It remains controversial whether NAA contribute to or protect from autoimmune diseases. Using site-directed transgenic (sd-tg) mice expressing a prototypic NAA, we investigated the effect of NAA and NAA-producing B cells in disease development in the autoimmune-prone MRL/MpJ-Fas(lpr) (MRL-lpr) mice. We found that the expression of NAA in MRL-lpr mice prevented proteinuria and reduced kidney immune complex formation. The mice had significantly improved survival. Administration of the IgM NAA to MRL-lpr mice also delayed the onset of nephritis. The sd-tg MRL-lpr mice had decreased levels of anti-dsDNA Abs, anti-Hep2 nuclear Abs, and anti-Sm/ribonucleoprotein Abs. There is a shift in the IgG subclass profile from IgG2a and IgG3 to IgG1 in the sd-tg MRL-lpr mice. The CD4(+) T cells from the sd-tg MRL-lpr mice had increased expression of the negative costimulatory molecule CTLA-4 and increased production of IL-10 as compared with those from the wild-type mice. Furthermore, the NAA B cells produced large amounts of IL-10 upon TLR stimulation. These results indicate that NAA and NAA-producing B cells play an important role in protection from lupus nephritis and suggest that the NAA B cells may have an immune regulatory function via the provision of IL-10.  相似文献   

4.
5.
To investigate the physiologic significance of enhanced renal thromboxane production in murine lupus nephritis, we measured renal hemodynamics and eicosanoid production in MRL-lpr/lpr mice from 8 to 20 weeks of age. Over this age range, MRL-lpr/lpr mice develop an autoimmune disease with nephritis similar to human systemic lupus erythematosus (SLE). In these studies, glomerular filtration rate (GFR) and PAH clearance (CPAH) decreased progressively with age in MRL-lpr/lpr mice, but not in controls. This impairment of renal hemodynamics was associated with increased renal thromboxane production, as well as increased excretion of both thromboxane B2 (TxB2) and 2,3-dinor TxB2 in urine. There was an inverse correlation between renal thromboxane production in MRL-lpr/lpr mice and both GFR and CPAH. Furthermore, there were positive correlations between thromboxane production by the kidney and both the severity of renal histopathology and serum anti-DNA antibody levels measured in individual animals. Enhanced urinary excretion of TxB2 and the development of renal dysfunction also coincided temporally with the appearance of increased levels of interleukin 1 beta (IL-1 beta) mRNA in renal cortex. Acute administration of the specific thromboxane receptor antagonist GR32191 to MRL-lpr/lpr mice restored GFR to normal in early stages of the autoimmune disease. However, in animals with more advanced nephritis, the effect of acute thromboxane receptor blockade on renal hemodynamics was less marked. We conclude that thromboxane A2 is an important mediator of reversible renal hemodynamic impairment in murine lupus, especially in the early phase of disease.  相似文献   

6.
Autoimmune MRL-lpr/lpr and NZB/W mice spontaneously secrete large quantities of pathogenic IgG1 and IgG2a autoantibodies. NZB mice also produce autoantibodies but these tend to be of the IgM H chain class. This work examines whether differences in the isotype of autoantibody produced by lupus-prone mice reflects differences in the sensitivity of autoreactive B cells to lymphokine-mediated IgG secretion. Twenty-five percent of normal BALB/c B cells produced IgG1 when stimulated in vitro with IL-4 plus LPS. This was comparable with the effect of IL-4 on small resting B cells from MRL-lpr/lpr and NZB/W mice. In contrast, less than 8% of the resting B cells from NZB mice produced IgG1 under these conditions. LPS plus IFN-gamma induced 5% of BALB/c and NZB/W but only 1% of NZB B cells to secrete IgG2a. Because lymphocytes from both young and old NZB mice showed diminished IgG1 and IgG2a secretion after lymphokine treatment, B cells from this strain appeared to be intrinsically resistant to the effects of IL-4 and IFN-gamma. In contrast, a disproportionately large proportion (22%) of B cells from adult MRL-lpr/lpr mice produced IgG2a when treated with IFN-gamma in vitro. Only B cells from MRL-lpr/lpr mice with active disease responded with such high levels of IgG2a production: cells from animals that had not yet developed clinical disease produced normal levels of IgG2a. Within each strain, B cells producing antibodies against autoantigens such as DNA, bromelain-treated mouse RBC and Sm responded to treatment with IL-4 and IFN-gamma in a manner indistinguishable from B cells producing antibodies against conventional Ag such as TNP and ARS.  相似文献   

7.
Systemic lupus erythematosus (SLE) is characterized by immune abnormalities explained by the overproduction of Th(2)cytokines such as autoantibody production and polyclonal B cell activation. We examined the effect of administering a DNA plasmid encoding IL-12 on the lupus-like disease of MRL/MP-lpr/lpr (MRL/lpr) mice. Treatments were delivered intramuscularly every 4 weeks, starting at 4 weeks of age. This intervention significantly inhibited the accumulation of CD4(-)CD8(-)T cells, and reduced lymphadenopathy and splenomegaly. A significant decrease in serum IgG anti-DNA autoantibody titers was observed, and plasmid IL-12 therapy was also associated with a reduction in the proteinuria and glomerulonephritis characteristic of this disease. Serum IFN-gamma level was increased by inoculating IL-12 encoding plasmid, suggesting that the cytokine balance was skewed towards Th(1). The clinical implications of this suppression of autoimmune disease are also discussed.  相似文献   

8.
Natural Abs have been implicated in initiating mesenteric ischemia/reperfusion (I/R)-induced tissue injury. Autoantibodies have affinity and self-Ag recognition patterns similar to natural Abs. We considered that autoimmunity-prone mice that express high titers of autoantibodies should have enhanced I/R-induced injury. Five-month-old B6.MRL/lpr mice displayed accelerated and enhanced intestinal I/R-induced damage compared with 2-mo-old B6.MRL/lpr and age-matched C57BL/6 mice. Similarly, older autoimmune mice had accelerated remote organ (lung) damage. Infusion of serum IgG derived from 5-mo-old but not 2-mo-old B6.MRL/lpr into I/R resistant Rag-1-/- mice rendered them susceptible to local and remote organ injury. Injection of monoclonal IgG anti-DNA and anti-histone Abs into Rag-1-/- mice effectively reconstituted tissue injury. These data show that like natural Abs, autoantibodies, such as anti-dsDNA and anti-histone Abs, can instigate I/R injury and suggest that they are involved in the development of tissue damage in patients with systemic lupus erythematosus.  相似文献   

9.
Studies of lymphoproliferation in MRL-lpr/lpr mice   总被引:6,自引:0,他引:6  
MRL-lpr/lpr mice develop massive lymphoproliferation and an associated autoimmune process that includes anti-DNA formation, vasculitis, and glomerulonephritis. We have investigated the lymphoproliferation of MRL-lpr/lpr mice and have found that multiple factors are operative. Although neonatal thymectomy markedly retards the syndrome, chronic injection of poly rI.rC could substitute for the thymus. The resulting cells had the phenotype characteristic of the abnormal MRL-lpr/lpr T cells, Thy-1+, dull Ly-1+, Lyt-2-, 6B2+, Ig-. Splenectomy at 2 wk of age markedly retarded the development of this syndrome; however, splenectomy at birth did not. Some protection was afforded by splenectomy at 5 wk. Thus, there appears to be a critical period in the life of an MRL-lpr/lpr mouse when the spleen contributes importantly to the lymphoproliferation. A most remarkable observation was that an MRL-lpr/lpr spleen graft under the kidney capsule could induce lymphadenopathy characteristic of lpr/lpr mice in MRL +/+ recipients. Cells within the graft had to be able to proliferate for the adenopathy to occur because irradiation of the spleen with 800 R just before grafting abrogated the lymphadenopathy-inducing potential. No adenopathy was induced by +/+ spleen grafts placed into +/+ mice. Although MRL-lpr/lpr males develop disease slightly more slowly than female littermates, the differences are small. Manipulations that retard disease, such as splenectomy at 2 wk or neonatal thymectomy, magnified the sex differences. Male MRL-lpr/lpr mice that were thymectomized and splenectomized and given polyclonal immune activators failed to develop either anti-DNA or lymphadenopathy, whereas their female littermates expressed both abnormalities. We conclude from these studies that multiple factors serve to modulate the magnitude of the lymphoproliferation and autoimmune syndrome of MRL-lpr/lpr mice.  相似文献   

10.
A murine IgG3 mAb, 6-19, derived from autoimmune MRL-lpr/lpr mice, is a rheumatoid factor (RF) specific for IgG2a and is able to generate cryoglobulins via nonspecific IgG3 Fc-Fc interaction. Intra-peritoneal passive transfer of ascites containing the 6-19 mAb into BALB/c mice induces skin leukocytoclastic vasculitis and acute glomerulonephritis associated with cryoglobulinemia. Because IgG3 interact with each other, we have determined whether noncryoprecipitating IgG3 mAb were able to inhibit the cryoprecipitation of 6-19 mAb and the development of related tissue lesions. In vitro, the cryoprecipitation of 6-19 mAb was almost completely inhibited by a fourfold excess of a noncryoprecipitating non-RF IgG3 (9-106) mAb derived from MRL-lpr/lpr mice. Cryoprecipitation of five other IgG3 mAb was similarly inhibited by the 9-106 mAb, and two other noncryoprecipitating IgG3 mAb, including the 2-6D antinuclear autoantibody, inhibited the cryoprecipitation of 6-19 mAb. In vivo, pretreatment of BALB/c mice with 9-106 or 2-6D mAb prevented the development of skin vasculitis and glomerulonephritis induced by the 6-19 mAb. The cryoglobulin formation was greatly diminished in 9-106 or 2-6D mAb-treated mice, although their serum levels of 6-19 mAb and RF activity were comparable to those of control mice. This indicated that pretreatment with non-cryoglobulin IgG3 inhibited the cryoglobulin generation and cryoglobulin-associated tissue lesions induced by an IgG3 RF cryoglobulin-generating mAb. These results suggest that the balance of formation of IgG3 autoantibodies with or without the cryoglobulin activity may be critical for the development of IgG3 cryoglobulin-mediated tissue lesions in murine lupus, particularly in MRL-lpr/lpr mice.  相似文献   

11.
The (NZB x SWR)F1 hybrid mice (SNF1) uniformly develop lethal glomerulonephritis in marked contrast to their parents and produce nephritogenic autoantibodies that consist of highly cationic, IgG anti-DNA antibodies that share distinct cross-reactive idiotypes called IdLNF1 (idiotypes-lupus nephritis-SNF1). Herein we found that spleen cells of SNF1 mice at the late prenephritic stage, contained CD4+/CD8- and CD4-/CD8- Th that not only induced their B cells in vitro to produce highly cationic IgG autoantibodies to DNA but IdLNF1-positive IgG antibodies as well. The double-negative Th were unexpected in the SNF1 mice because they lack the lpr (lymphoproliferation) gene. We also derived IL-2-dependent CD4+/CD8- as well as CD4-/CD8- T cell lines from nephritic SNF1 mice, that could simultaneously induce IdLNF1-positive and cationic anti-DNA antibodies of IgG class. The CD4+ T cell lines consisted of "autoreactive" T cells, but not all of the lines were equal in autoantibody-inducing capability. Remarkably, the T cell lines that preferentially responded to F1-hybrid-MHC determinants, had a significantly greater ability to augment the production of pathogenic autoantibodies. The SNF1-Th could also augment autoantibody production by the NZB or SWR parent's B cells; however, IdLNF1-positive and cationic anti-DNA autoantibodies of IgG class were not induced, suggesting that the SNF1 mice possess a select population of inducible (susceptible) B cells that are committed to produce nephritogenic autoantibodies and the parental strains are deficient in such B cells. Thus, production of nephritogenic autoantibodies with IdLNF1 markers in the SNF1 mice could result from an interaction between a select population of B cells and CD4+ Th that preferentially recognize unique F1-hybrid-MHC determinants, as well as double-negative auxiliary Th.  相似文献   

12.
MRL/lpr mice develop a spontaneous systemic lupus erythematosus-like autoimmune syndrome due to a dysfunctional Fas receptor, with contributions from other less well-defined genetic loci. The removal of B cells by genetic manipulation not only prevents autoantibody formation, but it also results in substantially reduced T cell activation and kidney inflammation. To determine whether B cell depletion by administration of Abs is effective in lupus mice with an intact immune system and established disease, we screened several B cell-specific mAbs and found that a combination of anti-CD79alpha and anti-CD79beta Abs was most effective at depleting B cells in vivo. Anti-CD79 therapy started at 4-5 mo of age in MRL/lpr mice significantly decreased B cells (B220(+)CD19(+)) in peripheral blood, bone marrow, and spleens. Treated mice also had a significant increase in the number of both double-negative T cells and naive CD4(+) T cells, and a decreased relative abundance of CD4(+) memory cells. Serum anti-chromatin IgG levels were significantly decreased compared with controls, whereas serum anti-dsDNA IgG, total IgG, or total IgM were unaffected. Overall, survival was improved with lower mean skin scores and significantly fewer focal inflammatory infiltrates in submandibular salivary glands and kidneys. Anti-CD79 mAbs show promise as a potential treatment for systemic lupus erythematosus and as a model for B cell depletion in vivo.  相似文献   

13.
To characterize further polyspecific interactions of antibodies to DNA, the binding of sera from autoimmune MRL-lpr/lpr mice to Escherichia coli beta-galactosidase (beta-gal) was analyzed. This protein was selected for study because of preliminary observations that sera from autoimmune mice bound unexpectedly to cloned fusion protein constructions containing beta-gal. Using ELISA assays, sera from MRL-lpr/lpr mice demonstrated high levels of antibodies to both DNA and beta-gal, in titers significantly greater than those of BALB/c controls. Affinity chromatography using beta-gal-Sepharose demonstrated that antibodies enriched for anti-beta-gal activity bound both DNA as well as beta-gal, indicating the presence of a population of cross-reactive anti-DNA antibodies. Furthermore, anti-DNA mAb of MRL-lpr/lpr strain origin also bound beta-gal by ELISA, although these levels were lower than those to DNA. Together, these results extend the range of polyspecific binding of murine anti-DNA antibodies to bacterial proteins. They further suggest caution in the interpretation of immunoassays using fusion protein constructions containing beta-gal, especially with sera from autoimmune mice.  相似文献   

14.
Target Ag display is a necessary requirement for the expression of certain immune-mediated kidney diseases. We previously had shown that anti-DNA Abs that cross-react with alpha-actinin may be important in the pathogenesis of murine and human lupus nephritis; in murine models, we had found that a significant proportion of pathogenic serum and kidney-deposited Igs are alpha-actinin reactive. Furthermore, a pathogenic anti-DNA/alpha-actinin Ab showed enhanced binding to immortalized mesangial cells (MCs) derived from a lupus prone MRL-lpr/lpr mouse as compared with MCs from BALB/c mice which are not susceptible to spontaneous lupus, suggesting that kidney alpha-actinin expression may be contributing to nephritis. In the current study, we established that two isoforms of alpha-actinin that are present in the kidney, alpha-actinin 1 and alpha-actinin 4, can both be targeted by anti-alpha-actinin Abs. We found novel sequence polymorphisms between MRL-lpr/lpr and BALB/c in the gene for alpha-actinin 4. Moreover, alpha-actinin 4 and a splice variant of alpha-actinin 1 were both expressed at significantly higher levels (mRNA and protein) in MCs from the lupus prone MRL-lpr/lpr strain. Significantly, we were able to confirm these differences in intact kidney by examining glomerular Ig deposition of anti-alpha-actinin Abs. We conclude that enhanced alpha-actinin expression may determine the extent of Ig deposition in the Ab-mediated kidney disease in lupus. Modulation of Ag expression may be a promising approach to down-regulate immune complex formation in the target organ in individuals with circulating pathogenic Abs.  相似文献   

15.
It was shown that IgGs from the sera of 2-7-month-old control non-autoimmune (CBA x C57BL)F1 and BALB/c mice and 2-3-month-old autoimmune prone MRL-lpr/lpr mice (conditionally healthy mice) are catalytically inactive. During spontaneous development of deep systemic lupus erythematosus (SLE)-like pathology a specific reorganization of immune system of these mice leads to conditions associated with a production of IgGs hydrolyzing DNA, ATP and polysaccharides with low catalytic activities (conditionally pre-diseased mice).A significant increase in DNase, ATPase and amylase IgG relative activities associated with a transition from pre-diseased to deep diseased mice is correlated with additional changes in differentiation and proliferation of mice bone marrow haematopoietic stem cells (HSCs) and lymphocyte proliferation in different organs.The highest increase in all abzyme activities was found in mice immunized with DNA, which in comparison with pre-diseased and diseased mice are characterized by a different profile of HSC differentiation and by a suppression of cell apoptosis. Abzyme activities in the serum of pregnant females were comparable with those for pre-diseased mice, but the profile of HSC differentiation and cell apoptosis levels in pregnant and pre-diseased mice were quite different. Right after the beginning of lactation (4 days after delivery) and in a late time of lactation (14 days after delivery) there was an observed increase in cell apoptosis and two different stages of significant change in the HSC differentiation profiles; the first stage was accompanied with a significant increase and the second with a remarkable decrease in abzyme activities. Overall, all mouse groups investigated are characterized by a specific relationship between abzyme activities, HSC differentiation profiles, levels of lymphocyte proliferation, and cell apoptosis in different organs. From our point of view, the appearance of ATPase, DNase activities may be considered the earliest statistically significant marker of mouse spontaneous SLE and a further significant increase in their activities correlates with the appearance of SLE visible markers and with an increase in concentrations of anti-DNA Abs and urine protein. However, development of autoimmune (AI)-reactions and the increase in the sera anti-DNA antibodies (Abs) and in the abzyme activities in pregnant and lactating mice do not associate with SLE visible markers and proteinuria. The possible differences in immune system reorganizations during pre-disease, disease, pregnancy and lactation leading to production of different auto-antibodies and abzymes are discussed.  相似文献   

16.
Following immunization with acetylcholine receptor (AChR), MHC class II-restricted, AChR-specific CD4 cell activation is critical for the development of experimental autoimmune myasthenia gravis (EAMG) in C57BL/6 mice. To study the contributions of B7-1 and B7-2 costimulatory molecules in EAMG, B7-1, B7-2, and B7-1/B7-2 gene knockout (KO) mice were immunized with Torpedo AChR in CFA. Compared with wild-type C57BL6 mice, B7-1 and B7-1/2 KO mice were resistant to EAMG development. B7-1 KO mice had reduced anti-AChR Ab compared with C57BL/6 mice. However, neither B7-1 nor B7-2 gene disruption impaired AChR-induced or dominant alpha(146-162) peptide-induced in vitro lymphoproliferative responses. Blocking of the B7-1 or B7-2 molecule by specific mAbs in vivo led to a reduction in the AChR-specific lymphocyte response, and the reduction was more pronounced in mice treated with anti-B7-2 Ab. The findings implicate B7-1 molecules as having a critical role in the induction of EAMG, and the resistance of B7-1 KO mice is associated with suppressed humoral, rather than suppressed AChR-specific, T cell responses. The data also point to B7-2 molecules as being the dominant costimulatory molecules required for AChR-induced lymphocyte proliferation.  相似文献   

17.
It has been reported that costimulation blockade can result in T cell anergy. We investigated the effects of blocking costimulatory molecules in vivo on the development of experimental autoimmune uveoretinitis (EAU), a model for autoimmune uveitis in humans that is induced in mice by immunization with the retinal Ag interphotoreceptor retinoid binding protein. B10.A mice immunized with a uveitogenic regimen of interphotoreceptor retinoid-binding protein were treated with Abs to B7.1 and B7.2 for 2 wk. Evaluation of EAU and immunological responses 1 wk later showed that disease had been abrogated, and cellular responses were suppressed. To determine whether the costimulation blockade resulted in tolerance, adult-thymectomized mice immunized for uveitis and treated with anti-B7 or anti-CD28 were rechallenged for uveitis induction 5 wk after the initial immunization. Although confirmed to be disease free after the initial immunization, both anti-B7- and anti-CD28-treated mice developed severe EAU and elevated cellular responses after the rechallenge, equivalent to those of control mice. We conclude that in this model costimulatory blockade in vivo prevents the development of autoimmune disease, but does not result in long-term tolerance. The data are compatible with the interpretation that B7/CD28 blockade prevents generation of effector, but not of memory, T cells.  相似文献   

18.
Autoantibodies directed against dsDNA are found in patients with systemic lupus erythematosus as well as in mice functionally deficient in either Fas or Fas ligand (FasL) (lpr/lpr or gld/gld mice). Previously, an IgH chain transgene has been used to track anti-dsDNA B cells in both nonautoimmune BALB/c mice, in which autoreactive B cells are held in check, and MRL-lpr/lpr mice, in which autoantibodies are produced. In this study, we have isolated the Fas/FasL mutations away from the autoimmune-prone MRL background, and we show that anti-dsDNA B cells in Fas/FasL-deficient BALB/c mice are no longer follicularly excluded, and they produce autoantibodies. Strikingly, this is accompanied by alterations in the frequency and localization of dendritic cells as well as a global increase in CD4 T cell activation. Notably, as opposed to MRL-lpr/lpr mice, BALB-lpr/lpr mice show no appreciable kidney pathology. Thus, while some aspects of autoimmune pathology (e.g., nephritis) rely on the interaction of the MRL background with the lpr mutation, mutations in Fas/FasL alone are sufficient to alter the fate of anti-dsDNA B cells, dendritic cells, and T cells.  相似文献   

19.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by immune abnormalities leading to multi-organ damage. The activation of autoreactive B cell differentiation will lead to the production of pathogenic autoantibodies, contributing to the development of SLE. However, the effects of Ophiopogonin D (OP-D) on B cell activation and autoantibody production as well as renal injury in the pathogenesis of SLE remain unclear. MRL/lpr mice, one of the most commonly used animal models of SLE, were intragastrically administered with 5 mg/kg/d OP-D at 17 weeks of age for 3 weeks. The survival rates of mice in each group were monitored for 6 weeks until 23 weeks of age. Proteinuria and serum creatinine levels were measured. Serum levels of immunoglobulin (Ig)G, IgM, and anti-dsDNA autoantibodies were detected by enzyme-linked immunosorbent assay. Numbers of CD19+ B cells in the blood, spleen and bone marrow and numbers of splenic germinal center (GC) B cells were calculated by using flow cytometry. OP-D treatment prolonged survival in MRL/lpr mice. OP-D treatment reduced proteinuria and serum creatinine levels as well as mitigated renal pathological alternation in MRL/lpr mice. Furthermore, serum levels of IgG, IgM, and anti-dsDNA autoantibodies were reduced by OP-D treatment. OP-D lessened not only CD19+ B cells in the spleen and bone marrow but also plasma cells that secreted anti-dsDNA autoantibodies, IgG and IgM in the spleen and bone marrow. OP-D ameliorated the progression of SLE by inhibiting the secretion of autoantibodies though reducing B cell numbers.  相似文献   

20.
To determine the genetic origins of lupus auto-antibodies, we analyzed the relationship between VH gene usage and auto-Ag-binding properties of 352 B cell hybridomas derived from MRL-lpr/lpr mice. The hybridomas were derived from neonatal, 1-month-old, 3-month-old, and 6-month-old mice. The experimental strategy provided that the hybridomas were monoclonal at initial evaluation, so the Ag binding and V gene frequencies of the entire population could be determined. Initially, 1032 Ig-producing hybridomas were evaluated for binding to six Ag; VH gene family use was determined in 119 anti-DNA and anti-rabbit thymus extract (RTE) antibodies (autoantibodies) and in 233 age-matched Ig that did not bind to any of the six Ag (nonbinders). Neonatal B cells, including cross-reactive IgM autoantibodies and nonbinder IgM, used relatively 3' VH genes. The majority of B cells in adult mice used VH genes of the J558 family. Although J558 use was significantly higher among the autoantibodies (anti-DNA and anti-RTE) than among the nonbinder Ig, this difference was due to a higher frequency of J558 use by 1-month-old mice. At 3 months, J558 use by the nonbinder Ig increased to the same frequency of J558 use as in the autoantibody population. J558 use in both groups of antibodies exceeded a previously reported estimation of J558 expression in the functional B cell repertoire of young adult MRL-lpr/lpr mice. Several subgroups of antibodies that share properties with pathogenic Ig, including IgG, cross-reactive Ig, and anti-dsDNA autoantibodies, demonstrated a marked preferential expression of the J558 family. These results suggest that there is an age-related bias in the activation of B cells using J558 VH genes in MRL-lpr/lpr mice that is under the influence of a selective force distinct from, or in addition to, an ssDNA or RTE auto-Ag-driven response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号