首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscisic acid (ABA), a plant stress hormone, has a chiral center (C1') in its molecule, yielding the enantiomers (1'S)-(+)-ABA and (1'R)-(-)-ABA during chemical synthesis. ABA 8'-hydroxylase (CYP707A), which is the major and key P450 enzyme in ABA catabolism in plants, catalyzes naturally occurring (1'S)-(+)-enantiomer, whereas it does not recognize naturally not occurring (1'R)-(-)-enantiomer as either a substrate or an inhibitor. Here we report a structural ABA analogue (AHI1), whose both enantiomers bind to recombinant Arabidopsis CYP707A3, in spite of stereo-structural similarity to ABA. The difference of AHI1 from ABA is the absence of the side-chain methyl group (C6) and lack of the alpha,beta-unsaturated carbonyl (C2'C3'-C4'O) in the six-membered ring. To explore which moiety is responsible for asymmetrical binding by CYP707A3, we synthesized and tested ABA analogues that lacked each moiety. Competitive inhibition was observed for the (1'R) enantiomers of these analogues in the potency order of (1'R,2'R)-(-)-2',3'-dihydro-4'-deoxo-ABA (K(I)=0.45 microM)>(1'R)-(-)-4'-oxo-ABA (K(I)=27 microM)>(1'R)-(-)-6-nor-ABA and (1'R,2'R)-(-)-2',3'-dihydro-ABA (no inhibition). In contrast to the (1'R)-enantiomers, the inhibition potency of the (1'S)-analogues declined with the saturation of the C2',C3'-double bond or with the elimination of the C4'-oxo moiety. These findings suggest that the C4'-oxo moiety coupled with the C2',C3'-double bond is the significant key functional group by which ABA 8'-hydroxylase distinguishes (1'S)-(+)-ABA from (1'R)-(-)-ABA.  相似文献   

2.
A major catabolic enzyme of the plant hormone abscisic acid (ABA) is the cytochrome P450 monooxygenase ABA 8'-hydroxylase. For designing a specific inhibitor of this enzyme, the substrate specificity and inhibition of CYP707A3, an ABA 8'-hydroxylase from Arabidopsis thaliana, was investigated using 45 structural analogues of ABA and compared to the structural requirements for ABA activity. Substrate recognition by the enzyme strictly required the 6'-methyl groups (C-8' and C-9'), which were unnecessary for ABA activity, whereas elimination of the 3-methyl (C-6) and 1'-hydroxyl groups, which significantly affected ABA activity, had little effect on the ability of analogues to competitively inhibit the enzyme. Fluorination at C-8' and C-9' resulted in resistance to 8'-hydroxylation and competitive inhibition of the enzyme. In particular, 8',8'-difluoro-ABA and 9',9'-difluoro-ABA yielded no enzyme reaction products and strongly inhibited the enzyme (K(I) = 0.16 and 0.25 microM, respectively).  相似文献   

3.
To examine the effect of the minor abscisic acid (ABA) metabolite 7'-hydroxy-ABA on Arabidopsis ABA 8'-hydroxylase (CYP707A3), we developed a novel and facile, four-step synthesis of 7'-hydroxy-ABA from alpha-ionone. Structural analogues of 7'-hydroxy-ABA, 1'-deoxy-7'-hydroxy-ABA, and 7'-oxo-ABA were also synthesized to evaluate the role of the 7'-hydroxyl group on binding to the enzyme. The result of enzyme inhibition assay suggests that the local polarity at C-7', neither steric bulkiness nor overall molecular hydrophilicity, would be the major reason why (+)-7'-hydroxy-ABA is not a potent inhibitor of CYP707A3.  相似文献   

4.
Structural analogues of the phytohormone (+)-abscisic acid (ABA) have been synthesized and tested as inhibitors of the catabolic enzyme (+)-ABA 8'-hydroxylase. Assays employed microsomes from suspension-cultured corn cells. Four of the analogues [(+)-8'-acetylene-ABA, (+)-9'-propargyl-ABA, (-)-9'-propargyl-ABA, and (+)-9'-allyl-ABA] proved to be suicide substrates of ABA 8'-hydroxylase. For each suicide substrate, inactivation required NADPH, increased with time, and was blocked by addition of the natural substrate, (+)-ABA. The most effective suicide substrate was (+)-9'-propargyl-ABA (K(I) = 0.27 microM). Several analogues were competitive inhibitors of ABA 8'-hydroxylase, of which the most effective was (+)-8'-propargyl-ABA (K(i) = 1.1 microM). Enzymes in the microsomal extracts also hydroxylated (-)-ABA at the 7'-position at a low rate. This activity was not inhibited by the suicide substrates, showing that the 7'-hydroxylation of (-)-ABA was catalyzed by a different enzyme from that which catalyzed 8'-hydroxylation of (+)-ABA. Based on the results described, a simple model for the positioning of substrates in the active site of ABA 8'-hydroxylase is proposed. In a representative physiological assay, inhibition of Arabidopsis thaliana seed germination, (+)-9'-propargyl-ABA and (+)-8'-acetylene-ABA exhibited substantially stronger hormonal activity than (+)-ABA itself.  相似文献   

5.
(1'S*,2'S*)-(+/-)-6-Nor-2',3'-dihydro-4'-deoxo-ABA (2) was designed and synthesized as a candidate lead compound for developing a potent and specific inhibitor of ABA 8'-hydroxylase. This compound acted as an effective competitive inhibitor of the enzyme, with a K(I) value of 0.40microM, without exhibiting ABA activity. However, compound 2 also functioned as an enzyme substrate, making it a short-lived inhibitor. The 8'-difluorinated derivative of 2 (4) was synthesized as a long-lasting alternative. Compound 4 resisted 8'-hydroxylation, but inhibited ABA 8'-hydroxylation as effectively as 2. These results suggest that compound 2 is a useful lead compound for the future design and development of an ideal ABA 8'-hydroxylase inhibitor.  相似文献   

6.
The biosynthetic pathways to abscisic acid (ABA) were investigated by feeding [1-(13)C]-D-glucose to cuttings from young tulip tree shoots and to two ABA-producing phytopathogenic fungi. 13C-NMR spectra of the ABA samples isolated showed that the carbons at 1, 5, 6, 4', 7' and 9' of ABA from the tulip tree were labeled with 13C, while the carbons at 2, 4, 6, 1', 3', 5', 7', 8' and 9' of ABA from the fungi were labeled with 13C. The former corresponds to C-1 and -5 of isopentenyl pyrophosphate, and the latter to C-2, -4 and -5 of isopentenyl pyrophosphate. This finding reveals that ABA was biosynthesized by the non-mevalonate pathway in the plant, and by the mevalonate pathway in the fungi. 13C-Labeled beta-carotene from the tulip tree showed that the positions of the labeled carbons were the same as those of ABA, being consistent with the biosynthesis of ABA via carotenoids. Lipiferolide of the tulip tree was also biosynthesized by the non-mevalonate pathway.  相似文献   

7.
The plant growth retardant S-(+)-uniconazole (UNI-OH) is a strong inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, stomatal closure, flowering, seed dormancy, and other physiological events. In the present study, we focused on the two polar sites of UNI-OH and synthesized 3- and 2'-modified analogs. Conformational analysis and an in vitro enzyme inhibition assay yielded new findings on the structure-activity relationship of UNI-OH: (1) by substituting imidazole for triazole, which increases affinity to heme iron, we identified a more potent compound, IMI-OH; (2) the polar group at the 3-position increases affinity for the active site by electrostatic or hydrogen-bonding interactions; (3) the conformer preference for a polar environment partially contributes to affinity for the active site. These findings should be useful for designing potent azole-containing specific inhibitors of ABA 8'-hydroxylase.  相似文献   

8.
The n.m.r. spectrum of abscisic acid (ABA) formed from [1,2-13C2]acetate by the fungus Cercospora rosicola shows 13C-13C coupling between C-6' (41.7 p.p.m.; 36 Hz) and the downfield 6'-methyl group (6'-Me) (24.3 p.p.m, 36 Hz). This 6'-Me, therefore, is derived from C-3' of mevalonate [Bennett, Norman & Maier (1981) Phytochemistry 20, 2343-2344]. An i.n.e.p.t. (insensitive nuclei enhanced by polarization transfer) pulse sequence demonstrated that the downfield 13C signal is produced by the 6'-Me that gives rise to the upfield 1H 6'-Me signal (23.1 d). The absolute configuration of this, the equatorial 6'-Me group, was determined as 6'-pro-R by decoupling and n.O.e. (nuclear-Overhauser-enhancement) experiments at 300 MHz using ABA, ABA in which the axial 6'-pro-S 5'-hydrogen atom had been exchanged with 2H in NaO2H and the 1',4'-cis- and 1',4'-trans-diols formed from these samples. The configuration at C-1' and at C-6' are now compatible with a chair-folded intermediate during cyclization, as proposed for beta- and epsilon-rings of carotenoids. ABA in solution exists, as in the crystalline form, with the ring in a pseudo-chair conformation. The side chain is axial and the C-3 Me and the C-5 hydrogen atoms are predominantly cis(Z).  相似文献   

9.
ABA analog structure-function relationships were determined by testing an array of 19 different ABA analogs on 1-year-old clonal white spruce ( Picea glauca [Moench.] Voss) raised from somatic embryos. The contribution of specific structural features to analog activity was determined from the relative effect of aeroponically applied analog solutions (10−3 M ) on seedling gas exchange. Seedling transpiration rate (E) and carbon assimilation rate (A) were measured continuously during treatment by means of a whole plant cuvette system. The analogs were racemic about the C-1' chiral center and were derived from changes imposed on six regions of the ABA molecule. The activity of optically pure (+)-S-ABA and (−)-R-ABA were also determined. Analog activity was reduced by changing the oxidation level at C-1 from the carboxylic acid. The ring C-2', C-3' double bond was important but not essential to activity. The activity lost through changes in ring structure and C-1 oxidation level was, in many cases, almost fully restored by replacing the C-4, C-5 double bond with a triple bond. Therefore, analogs with a triple bond at C-4 were more active than their equivalents with a dienoic side chain. Fluorination of the C-7' methyl caused a relatively moderate reduction in analog activity. Truncation of C-1 and C-2 from the side chain reduced activity to near zero. The unnatural (−)-ABA enantiomer was inactive.  相似文献   

10.
11.
Introduction of a stereodefined methyl group at the C-6 position of N-acetylglucosamine mono- and disaccharides creates a strong and predictable orientational bias on the geminal C-6 hydroxyl in solution, as determined by (1)H-(1)H and (13)C-(1)H NMR coupling constants. The conformational directing effect is more pronounced in the disaccharides because of the greater steric demand imposed by the neighboring glycosidic unit.  相似文献   

12.
13.
In plants, the level of abscisic acid (ABA) is determined by synthesis and catabolism. Hydroxylation of ABA at the 8' position is the key step in ABA catabolism. This reaction is catalyzed by ABA 8'-hydroxylase, a cytochrome P450 (CYP). The cDNAs of PvCYP707A1 and PvCYP707A2 were isolated from bean (Phaseolus vulgaris L.) axes treated with (+)-ABA and that of PvCYP707A3 from dehydrated bean leaves. The recombinant PvCYP707A proteins expressed in yeast were biochemically characterized. Yeast strains over-expressing any of the three PvCYP707As were able to convert ABA to phaseic acid (PA). The microsomal fractions from these yeast strains also exhibited ABA 8'-hydroxylase activity. Expression of PvCYP707A3 in primary leaves was strongly increased by water stress, whereas PvCYP707A1 and PvCYP707A2 mRNA levels were rapidly increased by rehydration of water-stressed leaves. Northern blot analysis of PvCYP707As in bean showed a high level of expression in the mature fruits, senescent leaves, roots, seed coats and axes. All three PvCYP707As were expressed at varying intensities throughout seed development. Imbibed seeds also had high PvCYP707A mRNA levels. Thus, expression of PvCYP707As is both environmentally and developmentally regulated. Transgenic Nicotiana sylvestris plants over-expressing PvCYP707As displayed a wilty phenotype, and had reduced ABA levels and increased PA levels. These results demonstrate that expression of PvCYP707As is the major mechanism by which ABA catabolism is regulated in bean.  相似文献   

14.
Xu L  Appell M  Kennedy S  Momany FA  Price NP 《Biochemistry》2004,43(42):13248-13255
Tunicamycins are potent inhibitors of UDP-N-acetyl-D-hexosamine:polyprenol-phosphate N-acetylhexosamine-1-phosphate translocases (D-HexNAc-1-P translocases), a family of enzymes involved in bacterial cell wall synthesis and eukaryotic protein N-glycosylation. Structurally, tunicamycins consist of an 11-carbon dialdose core sugar called tunicamine that is N-linked at C-1' to uracil and O-linked at C-11' to N-acetylglucosamine (GlcNAc). The C-11' O-glycosidic linkage is highly unusual because it forms an alpha/beta anomeric-to-anomeric linkage to the 1-position of the GlcNAc residue. We have assigned the (1)H and (13)C NMR spectra of tunicamycin and have undertaken a conformational analysis from rotating angle nuclear Overhauser effect (ROESY) data. In addition, chirally deuterated tunicamycins produced by fermentation of Streptomyces chartreusis on chemically synthesized, monodeuterated (S-6)-[(2)H(1)]glucose have been used to assign the geminal H-6'a, H-6'b methylene bridge of the 11-carbon dialdose sugar, tunicamine. The tunicamine residue is shown to assume pseudo-D-ribofuranose and (4)C(1) pseudo-D-galactopyranosaminyl ring conformers. Conformation about the C-6' methylene bridge determines the relative orientation of these rings. The model predicts that tunicamycin forms a right-handed cupped structure, with the potential for divalent metal ion coordination at 5'-OH, 8'-OH, and the pseudogalactopyranosyl 7'-O ring oxygen. The formation of tunicamycin complexes with various divalent metal ions was confirmed experimentally by MALDI-TOF mass spectrometry. Our data support the hypothesis that tunicamycin is a structural analogue of the UDP-D-HexNAc substrate and is reversibly coordinated to the divalent metal cofactor in the D-HexNAc-1-P translocase active site.  相似文献   

15.
Dibenzocyclooctadiene lignans isolated from Schisandra chinensis showed antiproliferative effects in various human cancer cells. The methoxy groups at C-3, C-4, C-3', and C-4', the hydroxyl group at C-8', and the stereo-configuration of the biphenyl ring and the angeloyl group might have influence on these activities. Additional studies indicate that one of mechanism of action of an active compound schizantherin C in A549 human lung cancer cells was related to the inhibition of cell cycle progression in G0/G1 phase.  相似文献   

16.
李茜茜  汪晓峰 《广西植物》2009,29(3):353-359
脱落酸(ABA)在植物的生长发育和环境胁迫响应等过程中具有重要作用。ABA合成与分解代谢的动态平衡共同调控植物内源ABA水平。ABA8′位甲基羟基化途径是高等植物内源ABA代谢的主要途径;8′-羟化酶是该代谢途径的关键酶,属于P450酶系。生物化学和基因组学研究表明,拟南芥CYP707A家族基因编码8′-羟化酶,该基因家族广泛存在于高等植物中,调控植物内源ABA代谢,介导ABA相关的生理生化过程。本文综述了ABA分解代谢的基本途径,详细概述了ABA8′位甲基羟基化途径及该代谢途径的关键酶8′-羟化酶。同时介绍了8′-羟化酶编码基因-CYP707A家族基因的生物学特征和功能。  相似文献   

17.
The biosynthetic pathway to abscisic acid (ABA) from isopentenyl diphosphate in the fungus, Botrytis cinerea, was investigated. Labeling experiments with (18)O2 and H2(18)O indicated that all oxygen atoms at C-1, -1, -1' and -4' of ABA were derived from molecular oxygen, and not from water. This finding was inconsistent not only with the known carotenoid pathway via oxidative cleavage of carotenoids, but also with the classical direct pathway via cyclization of farnesyl diphosphate. The fungus produced new C15-compounds, 2E,4E-alpha-ionylideneethane and 2Z,4E-alpha-ionylideneethane, along with 2E,4E,6E-allofarnesene and 2Z,4E,6E-allofarnesene, but did not apparently produce carotenoids except for a trace of phytoene. The C15-compounds labeled with 13C were converted to ABA by the fungus, and the incorporation ratio of 2Z,4E-alpha-ionylideneethane was higher than that of 2E,4E-alpha-ionylideneethane. From these results, it was concluded that farnesyl diphosphate was reduced at C-1, desaturated at C-4, and isomerized at C-2 to form 2Z,4E,6E-allofarnesene before being cyclized to 2Z,4E-alpha-ionylideneethane; the ionylideneethane was then oxidized to ABA with molecular oxygen. This direct pathway via ionylideneethane means that the biosynthetic pathway to fungal ABA, not only before but also after isopentenyl diphosphate, differs from that to ABA in plants, since plant ABA is biosynthesized using the non-mevalonate and carotenoid pathways.  相似文献   

18.
Ethylene and submergence enhance stem elongation of deepwater rice, at least in part, by reducing in the internode the endogenous abscisic acid (ABA) content and increasing the level of gibberellin A1 (GA1). We cloned and characterized the CYP707A5 and CYP707A6 genes, which encode putative ABA 8'-hydroxylase, the enzyme that catalyzes the oxidation of ABA. Expression of CYP707A5 was upregulated significantly by ethylene treatment, whereas that of CYP707A6 was not altered. Recombinant proteins from both genes expressed in yeast cells showed activity of ABA 8'-hydroxylase. This finding indicates that CYP707A5 may play a role in ABA catabolism during submergence- or ethylene-induced stem elongation in deepwater rice. Taken together, these results provide links between the molecular mechanisms and physiological phenomena of submergence- and ethylene-induced stem elongation in deepwater rice.  相似文献   

19.
The structural requirements for binding to the glucose/sorbose-transport system in the human erythrocyte were explored by measuring the inhibition constants, K(i), for specifically substituted analogues of d-glucose when l-sorbose was the penetrating sugar. Derivatives in which a hydroxyl group in the d-gluco configuration was inverted, or replaced by a hydrogen atom, at C-1, C-2, C-3, C-4 or C-6 of the d-glucose molecule, all bound to the carrier, confirming that no single hydroxyl group is essential for binding to the carrier. The binding and transport of 1-deoxy-d-glucose confirmed that the sugars bind in the pyranose form. The relative inhibition constants of d-glucose and its deoxy, epimeric and fluorinated analogues are consistent with the combination of beta-d-glucopyranose with the carrier by hydrogen bonds at C-1, C-3, probably C-4, and possibly C-6 of the sugar. Both polar and non-polar substituents at C-6 enhance the affinity of d-glucose derivatives relative to d-xylose, and d-galactose derivatives relative to l-arabinose, and it is suggested that the carrier region around C-6 of the sugar may contain both hydrophobic and polar binding groups. The spatial requirements at C-1, C-2, C-3, C-4 and C-6 were explored by comparing the relative binding of d-glucose and its halogeno and O-alkyl substituents. The carrier protein closely approaches the sugar except at C-3 in the d-gluco configuration, C-4 and C-6. d-Glucal was a good inhibitor, showing that a strict chair form is not essential for binding. 3-O-(2',3'-Epoxypropyl)-d-glucose, a potential substrate-directed alkylating agent, bound to the carrier, but did not inactivate it.  相似文献   

20.
An oxidized pterin species, termed compound Z, has been isolated from molybdenum cofactor-deficient mutants of Escherichia coli and shown to be the direct product of oxidation of a molybdopterin precursor which accumulates in these mutants. The complete structural characterization of compound Z has been accomplished. A carbonyl function at C-1' of the 6-alkyl side chain can be reacted with 2,4-dinitrophenylhydrazine to yield a phenylhydrazone and can be reduced with borohydride, producing a mixture of two enantiomers, each with a hydroxyl group on C-1'. Compound Z contains one phosphate/pterin and no sulfur. The phosphate group is insensitive to alkaline phosphatase and to a number of phosphodiesterases but is quantitatively released as inorganic phosphate by mild acid hydrolysis. From 31P and 1H NMR of compound Z it was inferred that the phosphate is bound to C-2' and C-4' of a 4-carbon side chain, forming a 6-membered cyclic structure. Mass spectral analysis showed an MH+ ion with an exact mass of 344.0401 corresponding to the molecular formula C10H11N5O7P, confirming the proposed structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号