共查询到20条相似文献,搜索用时 0 毫秒
1.
Animals often use social information about conspecifics in making decisions about cooperation and conflict. While the importance of kin selection in the evolution of intraspecific cooperation and conflict is widely acknowledged, few studies have examined how relatedness influences the evolution of social information use. Here we specifically examine how relatedness affects the evolution of a stylised form of social information use known as eavesdropping. Eavesdropping involves individuals escalating conflicts with rivals observed to have lost their last encounter and avoiding fights with those seen to have won. We use a game theoretical model to examine how relatedness affects the evolution of eavesdropping, both when strategies are discrete and when they are continuous or mixed. We show that relatedness influences the evolution of eavesdropping, such that information use peaks at intermediate relatedness. Our study highlights the importance of considering kin selection when exploring the evolution of complex forms of information use. 相似文献
2.
Kazuki Tsuji 《Biology letters》2013,9(6)
Can evolutionary and ecological dynamics operating at one level of the biological hierarchy affect the dynamics and structure at other levels? In social insects, strong hostility towards unrelated individuals can evolve as a kin-selected counter-adaptation to intraspecific social parasitism. This aggression in turn might cause intraspecific competition to predominate over interspecific competition, permitting coexistence with other social insect species. In other words, kin selection—a form of intra-population dynamics—might enhance the species richness of the community, a higher-level structure. The converse effect, from higher to lower levels, might also operate, whereby strong interspecific competition may limit the evolution of selfish individual traits. If the latter effect were to prove more important, it would challenge the common view that intra-population dynamics (via individual or gene selection) is the main driver of evolution. 相似文献
3.
Kin selection,kin avoidance and correlated strategies 总被引:1,自引:0,他引:1
Gregory B. Pollock 《Evolutionary ecology》1996,10(1):29-43
Summary Kin selection of correlated strategies is examined for both weak and strong altruism under simple haploid inheritance. While kin assortment enhances the range of evolutionary stability for (strongly altruistic) correlated strategies (defined herein), kin avoidance is possible under a weakly altruistic correlated strategy. When social competition induces role assignments of variable fitness, group mates may prefer association with non-relatives. Even when group life is mandatory, an individual may accept the risk of abandonment (and reproductive death) rather then associate with kin: a competitive superior may behave altruistically by permitting competitively inferior kin to emigrate. Thus, kin selection and social competition are not necessarily mutually supportive processes within groups. I conclude by interpreting dominance as a strongly altruistic correlated strategy in two social hymenopteran contexts. 相似文献
4.
Social interactions between conspecific parasites are partly dependent on the relatedness of interacting parasites (kin selection), which, in turn, is predicted to affect the extent of damage they cause their hosts (virulence). High relatedness is generally assumed to favour less competitive interactions, but the relationship between relatedness and virulence is crucially dependent on the social behaviour in question. Here, we discuss the rather limited body of experimental work that addresses how kin-selected social behaviours affect virulence. First, if prudent use of host resources (a form of cooperation) maximizes the transmission success of the parasite population, decreased relatedness is predicted to result in increased host exploitation and virulence. Experimental support for this well-established theoretical result is surprisingly limited. Second, if parasite within-host growth rate is a positive function of cooperation (that is, when individuals need to donate public goods, such as extracellular enzymes), virulence is predicted to increase with increasing relatedness. The limited studies testing this hypothesis are broadly consistent with this prediction. Finally, there is some empirical evidence supporting theory that suggests that spiteful behaviours are maximized at intermediate degrees of relatedness, which, in turn, leads to minimal virulence because of the reduced growth rate of the infecting population. We highlight the need for further thorough experimentation on the role of kin selection in the evolution of virulence and identify additional biological complexities to these simple frameworks. 相似文献
5.
Kin selection versus sexual selection: why the ends do not meet 总被引:2,自引:0,他引:2
Boomsma JJ 《Current biology : CB》2007,17(16):R673-R683
I redevelop the hypothesis that lifetime monogamy is a fundamental condition for the evolution of eusocial lineages with permanent non-reproductive castes, and that later elaborations--such as multiply-mated queens and multi-queen colonies--arose without the re-mating promiscuity that characterizes non-social and cooperative breeding. Sexually selected traits in eusocial lineages are therefore peculiar, and their evolution constrained. Indirect (inclusive) fitness benefits in cooperatively breeding vertebrates appear to be negatively correlated with promiscuity, corroborating that kin selection and sexual selection tend to generally exclude each other. The monogamy window required for transitions from solitary and cooperative breeding towards eusociality implies that the relatedness and benefit-cost variables of Hamilton's rule do not vary at random, but occur in distinct and only partly overlapping combinations in cooperative, eusocial, and derived eusocial breeding systems. 相似文献
6.
7.
Rumbaugh KP Trivedi U Watters C Burton-Chellew MN Diggle SP West SA 《Proceedings. Biological sciences / The Royal Society》2012,279(1742):3584-3588
Bacterial growth and virulence often depends upon the cooperative release of extracellular factors excreted in response to quorum sensing (QS). We carried out an in vivo selection experiment in mice to examine how QS evolves in response to variation in relatedness (strain diversity), and the consequences for virulence. We started our experiment with two bacterial strains: a wild-type that both produces and responds to QS signal molecules, and a lasR (signal-blind) mutant that does not release extracellular factors in response to signal. We found that: (i) QS leads to greater growth within hosts; (ii) high relatedness favours the QS wild-type; and (iii) low relatedness favours the lasR mutant. Relatedness matters in our experiment because, at relatively low relatedness, the lasR mutant is able to exploit the extracellular factors produced by the cells that respond to QS, and hence increase in frequency. Furthermore, our results suggest that because a higher relatedness favours cooperative QS, and hence leads to higher growth, this will also lead to a higher virulence, giving a relationship between relatedness and virulence that is in the opposite direction to that usually predicted by virulence theory. 相似文献
8.
9.
Kin selection and reciprocal cooperation provide two candidate explanations for the evolution of cooperation. Models of the evolution of cooperation have typically focussed on one or the other mechanism, despite claims that kin selection could pave the way for the evolution of reciprocal cooperation. We describe a computer simulation model that explicitly supports both kin selection and reciprocal cooperation. The model simulates a viscous population of discrete individuals with social interaction taking the form of the Prisoner's Dilemma and selection acting on performance in these interactions. We recount how the analytical and empirical study of this model led to the conclusion that kin selection may actually inhibit the evolution of effective strategies for establishing reciprocal cooperation. 相似文献
10.
Social conflict, in the form of intraspecific selfish "cheating," has been observed in a number of natural systems. However, a formal, evolutionary genetic theory of social cheating that provides an explanatory, predictive framework for these observations is lacking. Here we derive the kin selection-mutation balance, which provides an evolutionary null hypothesis for the statics and dynamics of cheating. When social interactions have linear fitness effects and Hamilton's rule is satisfied, selection is never strong enough to eliminate recurrent cheater mutants from a population, but cheater lineages are transient and do not invade. Instead, cheating lineages are eliminated by kin selection but are constantly reintroduced by mutation, maintaining a stable equilibrium frequency of cheaters. The presence of cheaters at equilibrium creates a "cheater load" that selects for mechanisms of cheater control, such as policing. We find that increasing relatedness reduces the cheater load more efficiently than does policing the costs and benefits of cooperation. Our results provide new insight into the effects of genetic systems, mating systems, ecology, and patterns of sex-limited expression on social evolution. We offer an explanation for the widespread cheater/altruist polymorphism found in nature and suggest that the common fear of conflict-induced social collapse is unwarranted. 相似文献
11.
DAVID C. QUELLER 《Biological journal of the Linnean Society. Linnean Society of London》1984,23(2-3):133-143
Game theory models show that the evolution of interactions between relatives is determined by two kinds of fitness effects: Hamilton's inclusive fitness effect, and a frequency-dependent synergistic effect. The latter arises when an individual's behaviour has different effects on the fitness of interactants, depending on whether or not they perform the same behaviour. Knowing the sign of the synergistic effect is sufficient to understand most of the qualitative features of genetic models that show departures from Hamilton's rule. Since this synergistic effect does not depend on the interactants being related, it is best viewed as something distinct from kin selection. In this view, Hamilton's rule is basically correct for describing kin selection, and most deviations from it are due to the distinct process of synergistic selection. 相似文献
12.
Ophélie Ronce Daniel Promislow 《Proceedings. Biological sciences / The Royal Society》2010,277(1700):3659-3667
Most theoretical models for the evolution of senescence have assumed a very large, well mixed population. Here, we investigate how limited dispersal and kin competition might influence the evolution of ageing by deriving indicators of the force of selection, similar to Hamilton (Hamilton 1966 J. Theor. Biol. 12, 12–45). Our analytical model describes how the strength of selection on survival and fecundity changes with age in a patchy population, where adults are territorial and a fraction of juveniles disperse between territories. Both parent–offspring competition and sib competition then affect selection on age-specific life-history traits. Kin competition reduces the strength of selection on survival. Mutations increasing mortality in some age classes can even be favoured by selection, but only when fecundity deteriorates rapidly with age. Population structure arising from limited dispersal however selects for a broader distribution of reproduction over the lifetime, potentially slowing down reproductive senescence. The antagonistic effects of limited dispersal on age schedules of fecundity and mortality cast doubts on the generality of conditions allowing the evolution of ‘suicide genes’ that increase mortality rates without other direct pleiotropic effects. More generally, our model illustrates how limited dispersal and social interactions can indirectly produce patterns of antagonistic pleiotropy affecting vital rates at different ages. 相似文献
13.
R M Seyfarth 《Journal of theoretical biology》1977,65(4):671-698
Grooming networks among adult female monkeys exhibit two similar features across a number of different species. High-ranking animals receive more grooming than others, and the majority of grooming occurs between females of adjacent rank. A theoretical model which duplicates these features is presented, and the properties of the model are used to explain the possible causation and function of female grooming behaviour. The model illustrates how relatively simple principles governing the behaviour of individuals may be used to explain more complex aspects of the social structure of non-human primate groups. 相似文献
14.
Conventional models predict that low genetic relatedness among parasites that coinfect the same host leads to the evolution of high parasite virulence. Such models assume adaptive responses to hard selection only. We show that if soft selection is allowed to operate, low relatedness leads instead to the evolution of low virulence. With both hard and soft selection, low relatedness increases the conflict among coinfecting parasites. Although parasites can only respond to hard selection by evolving higher virulence and overexploiting their host, they can respond to soft selection by evolving other adaptations, such as interference, that prevent overexploitation. Because interference can entail a cost, the host may actually be underexploited, and virulence will decrease as a result of soft selection. Our analysis also shows that responses to soft selection can have a much stronger effect than responses to hard selection. After hard selection has raised virulence to a level that is an evolutionarily stable strategy, the population, as expected, cannot be invaded by more virulent phenotypes that respond only to hard selection. The population remains susceptible to invasion by a less virulent phenotype that responds to soft selection, however. Thus, hard and soft selection are not just alternatives. Rather, soft selection is expected to prevail and often thwart the evolution of virulence in parasites. We review evidence from several parasite systems and find support for soft selection. Most of the examples involve interference mechanisms that indirectly prevent the evolution of higher virulence. We recognize that hard selection for virulence is more difficult to document, but we take our results to suggest that a kin selection model with soft selection may have general applicability. 相似文献
15.
16.
17.
18.
A G Fix 《American journal of physical anthropology》1984,65(2):201-212
A Monte Carlo simulation based on the population structure of a small-scale human population, the Semai Senoi of Malaysia, has been developed to study the combined effects of group, kin, and individual selection. The population structure resembles D.S. Wilson's structured deme model in that local breeding populations (Semai settlements) are subdivided into trait groups (hamlets) that may be kin-structured and are not themselves demes. Additionally, settlement breeding populations are connected by two-dimensional stepping-stone migration approaching 30% per generation. Group and kin-structured group selection occur among hamlets the survivors of which then disperse to breed within the settlement population. Genetic drift is modeled by the process of hamlet formation; individual selection as a deterministic process, and stepping-stone migration as either random or kin-structured migrant groups. The mechanism for group selection is epidemics of infectious disease that can wipe out small hamlets particularly if most adults become sick and social life collapses. Genetic resistance to a disease is an individual attribute; however, hamlet groups with several resistant adults are less likely to disintegrate and experience high social mortality. A specific human gene, hemoglobin E, which confers resistance to malaria, is studied as an example of the process. The results of the simulations show that high genetic variance among hamlet groups may be generated by moderate degrees of kin-structuring. This strong microdifferentiation provides the potential for group selection. The effect of group selection in this case is rapid increase in gene frequencies among the total set of populations. In fact, group selection in concert with individual selection produced a faster rate of gene frequency increase among a set of 25 populations than the rate within a single unstructured population subject to deterministic individual selection. Such rapid evolution with plausible rates of extinction, individual selection, and migration and a population structure realistic in its general form, has implications for specific human polymorphisms such as hemoglobin variants and for the more general problem of the tempo of evolution as well. 相似文献
19.
The formation of silaspiropentane from addition of singlet silacyclopropylidene 1 and silacyclopropylidenoid 8 to ethylene has been investigated separately at the B3LYP, X3LYP, WB97XD, and M05–2X theories using the 6–31+G(d,p) basis set. The silacycloproylidenoid addition follows a stepwise route. In contrast, a concerted mechanism occurs for silacyclopropylidene addition. Moreover, the intramolecular rearrangements of silaspiropentane 9 to methylenesilacyclobutane 11 and 2-silaallene?+?ethylene 12 have been studied extensively. The required energy barrier for the isomerization of 9 to 10 was determined to be 44.0 kcal mol?1 at the B3LYP/6–31+G(d,p) level. After formation of 10, the rearrangement to methylenesilacyclobutane 12 is highly exergonic by ?15.9 kcal mol?1, which makes this reaction promising. However, the conversion of 9 to 11 is calculated to be quite endergonic, by 26.5 kcal mol?1. 相似文献
20.
Empirical and theoretical studies have supported kin selection by demonstrating nepotism or modelling its conditions and consequences. As an alternative, we previously found that female Columbian ground squirrels had greater direct fitness when more close kin were present. Extending those results, we used population matrix methods to calculate minimum estimates of individual fitness, estimated direct and indirect components of fitness, estimated inclusive fitness by adding the direct fitness (stripped of estimated influences of the social environment) and indirect fitness components together, and finally looked for inclusive fitness benefits of associations with close kin who seem to be 'genial neighbours'. We examined the estimated fitness of a sample of 35 females for which complete lifetimes were known for themselves, their mothers and their littermate sisters. Six of these females had no cosurviving adult close kin, and their direct fitness was significantly lower than 29 females with such kin (λ = 0.66 vs. λ = 1.23). The net fitness benefit of the presence of close kin was thus 0.57. The estimated indirect component of fitness through benefits to the direct fitness of close kin was 0.43. Thus, estimated inclusive fitness for females with cosurviving close kin (λ = 1.09) was significantly greater than that for females without surviving close kin (viz., λ = 0.66). The presence of closely related and philopatric female kin appeared to result in considerable fitness benefits for female ground squirrels, perhaps through the behavioural mechanisms of lowered aggression and other forms of behavioural cooperation. 相似文献