首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chemical assessment of the complete disulphide bridge pattern in the beta-chain of human recombinant follicotropin (betaFSH) was accomplished by integrating classical biochemical methodologies with mass spectrometric procedures. A proteolytic strategy consisting of a double digestion of native betaFSH using the broad-specificity protease subtilisin first, followed by trypsin, was employed. The resulting peptide mixture was directly analysed by FAB-MS, leading to the assignment of the first three disulphide bridges. The remaining S-S bridges were determined by HPLC fractionation of the proteolytic digest followed by ESMS analysis of the individual fractions. The pattern of cysteine couplings in betaFSH was determined as: Cys3-Cys5l, Cys17-Cys66, Cys20-Cys104, Cys28-Cys82, Cys32-Cys84 and Cys87-Cys94, confirming the arrangement inferred from the crystal structure of the homologous betaCG. A subset of the S-S bridge pattern comprising Cys3-Cys51, Cys28-Cys82 and Cys32-Cys84 constitutes a cysteine knot motif similar to that found in the growth factor superfamily.  相似文献   

2.
von Willebrand factor (VWF) is a multimeric glycoprotein that is required for normal hemostasis. After translocation into the endoplasmic reticulum, proVWF subunits dimerize through disulfide bonds between their C-terminal cystine knot-like (CK) domains. CK domains are characterized by six conserved cysteines. Disulfide bonds between cysteines 2 and 5 and between cysteines 3 and 6 define a ring that is penetrated by a disulfide bond between cysteines 1 and 4. Dimerization often is mediated by additional cysteines that differ among CK domain subfamilies. When expressed in a baculovirus system, recombinant VWF CK domains (residues 1957-2050) were secreted as dimers that were converted to monomers by selective reduction and alkylation of three unconserved cysteine residues: Cys(2008), Cys(2010), and Cys(2048). By partial reduction and alkylation, chemical and proteolytic digestion, mass spectrometry, and amino acid sequencing, the remaining intrachain disulfide bonds were characterized: Cys(1961)-Cys(2011) (), Cys(1987)-Cys(2041) (), Cys(1991)-Cys(2043) (), and Cys(1976)-Cys(2025). The mutation C2008A or C2010A prevented dimerization, whereas the mutation C2048A did not. Symmetry considerations and molecular modeling based on the structure of transforming growth factor-beta suggest that one or three of residues Cys(2008), Cys(2010), and Cys(2048) in each subunit mediate the covalent dimerization of proVWF.  相似文献   

3.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

4.
Primary structure of human alpha 2-macroglobulin. V. The complete structure   总被引:14,自引:0,他引:14  
The primary structure of the tetrameric plasma glycoprotein human alpha 2-macroglobulin has been determined. The identical subunits contain 1451 amino acid residues. Glucosamine-based oligosaccharide groups are attached to asparagine residues 32, 47, 224, 373, 387, 846, 968, and 1401. Eleven intrachain disulfide bridges have been placed (Cys25-Cys63, Cys228-Cys276, Cys246-Cys264, Cys255-Cys408, Cys572-Cys748, Cys619-Cys666, Cys798-Cys826, Cys824-Cys860, Cys898-Cys1298, Cys1056-Cys1104, and Cys1329-Cys1444). Cys-447 probably forms an interchain bridge with Cys-447 from another subunit. The beta-SH group of Cys-949 is thiol esterified to the gamma-carbonyl group of Glx-952, thus forming an activatable reactive site which can mediate covalent binding of nucleophiles. A putative transglutaminase cross-linking site is constituted by Gln-670 and Gln-671. The primary sites of proteolytic cleavage in the activation cleavage area (the "bait" region) are located in the sequence: -Arg681-Val-Gly-Phe-Tyr-Glu-. The molecular weight of the unmodified alpha 2-macroglobulin subunit is 160,837 and approximately 179,000, including the carbohydrate groups. The presence of possible internal homologies within the alpha 2-macroglobulin subunit is discussed. A comparison of stretches of sequences from alpha 2-macroglobulin with partial sequence data for complement components C3 and C4 indicates that these proteins are evolutionary related. The properties of alpha 2-macroglobulin are discussed within the context of proteolytically regulated systems with particular reference to the complement components C3 and C4.  相似文献   

5.
Location of disulfide bonds within the sequence of human serum cholinesterase   总被引:10,自引:0,他引:10  
Human serum cholinesterase was digested with pepsin under conditions which left disulfide bonds intact. Peptides were isolated by high pressure liquid chromatography, and those containing disulfide bonds were identified by a color assay. Peptides were characterized by amino acid sequencing and composition analysis. Human serum cholinesterase contains 8 half-cystines in each subunit of 574 amino acids. Six of these form three internal disulfide bridges: between Cys65-Cys92, Cys252-Cys263, and Cys400-Cys519. A disulfide bond with Cys65 rather than Cys66 was inferred by homology with Torpedo acetylcholinesterase. Cys571 forms a disulfide bridge with Cys571 of an identical subunit. This interchain disulfide bridge is four amino acids from the carboxyl terminus. A peptide containing the interchain disulfide is readily cleaved from cholinesterase by trypsin (Lockridge, O., and La Du, B. N. (1982) J. Biol. Chem. 257, 12012-12018), suggesting that the carboxyl terminus is near the surface of the globular tetrameric protein. The disulfide bridges in human cholinesterase have exactly the same location as in Torpedo californica acetylcholinesterase. There is one potential free sulfhydryl in human cholinesterase at Cys66, but this sulfhydryl could not be alkylated. Comparison of human cholinesterase, and Torpedo and Drosophila acetylcholinesterases to the serine proteases suggests that the cholinesterases constitute a separate family of serine esterases, distinct from the trypsin family and from subtilisin.  相似文献   

6.
The primary structure determination of the dimeric invertebrate alpha(2)-macroglobulin (alpha(2)M) from Limulus polyphemus has been completed by determining its sites of glycosylation and disulfide bridge pattern. Of seven potential glycosylation sites for N-linked glycosylation, six (Asn(275), Asn(307), Asn(866), Asn(896), Asn(1089), and Asn(1145)) carry common glucosamine-based carbohydrates groups, whereas one (Asn(80)) carries a carbohydrate chain containing both glucosamine and galactosamine. Nine disulfide bridges, which are homologues with bridges in human alpha(2)M, have been identified (Cys(228)-Cys(269), Cys(456)-Cys(580), Cys(612)-Cys(799), Cys(657)-Cys(707), Cys(849)-Cys(876), Cys(874)-Cys(910), Cys(946)-Cys(1328), Cys(1104)-Cys(1155), and Cys(1362)-Cys(1475)). In addition to these bridges, Limulus alpha(2)M contains three unique bridges that connect Cys(361) and Cys(382), Cys(1370) and Cys(1374), respectively, and Cys(719) in one subunit with the same residue in the other subunit of the dimer. The latter bridge forms the only interchain disulfide bridge in Limulus alpha(2)M. The location of this bridge within the bait region is discussed and compared with other alpha-macroglobulins. Several peptides identified in the course of determining the disulfide bridge pattern provided evidence for the existence of two forms of Limulus alpha(2)M. The two forms have a high degree of sequence identity, but they differ extensively in large parts of their bait regions suggesting that they have different inhibitory spectra. The two forms (Limulus alpha(2)M-1 and -2) are most likely present in an approximately 2:1 ratio in the hemolymph of each animal, and they can be partially separated on a Mono Q column at pH 7.4 by applying a shallow gradient of NaCl.  相似文献   

7.
Hua QX  Nakagawa SH  Jia W  Hu SQ  Chu YC  Katsoyannis PG  Weiss MA 《Biochemistry》2001,40(41):12299-12311
The landscape paradigm of protein folding can enable preferred pathways on a funnel-like energy surface. Hierarchical preferences may be manifest as a nonrandom pathway of disulfide pairing. Stepwise stabilization of structural subdomains among on-pathway intermediates is proposed to underlie the disulfide pathway of proinsulin and related molecules. Here, effects of pairwise serine substitution of insulin's exposed interchain disulfide bridge (Cys(A7)-Cys(B7)) are characterized as a model of a late intermediate. Untethering cystine A7-B7 in an engineered monomer causes significantly more marked decreases in the thermodynamic stability and extent of folding than occur on pairwise substitution of internal cystine A6-A11 [Weiss, M. A., Hua, Q. X., Jia, W., Chu, Y. C., Wang, R. Y., and Katsoyannis, P. G. (2000) Biochemistry 39, 15429-15440]. Although substantially disordered and without significant biological activity, the untethered analogue contains a molten subdomain comprising cystine A20-B19 and a native-like cluster of hydrophobic side chains. Remarkably, A and B chains make unequal contributions to this folded moiety; the B chain retains native-like supersecondary structure, whereas the A chain is largely disordered. These observations suggest that the B subdomain provides a template to guide folding of the A chain. Stepwise organization of insulin-like molecules supports a hierarchic view of protein folding.  相似文献   

8.
Phenoloxidase inhibitor (POI), found in the hemolymph of housefly pupae, is a novel dopa-containing and cystine-rich peptide that competitively inhibits phenoloxidase with a Ki in the nanomolar range. [Tyr32]POI is a potential precursor molecule also found in the hemolymph that may be posttranslationally oxidized to the dopa-containing peptide after creation of a rigid structure. By employing both a solid-phase peptide synthesis system based on a 9-fluorenylmethoxycarbonyl strategy and a specific air oxidation technique to ensure correct folding, we have been able to synthesize [Tyr32]POI. The synthetic [Tyr32]POI was confirmed to be identical to the native [Tyr32]POI by coelution high-performance liquid chromatography analysis and by enzymatic analysis using the phenoloxidase inhibition assay. To determine the disulfide pairings within the peptides, a series of enzyme hydrolyses and partial reduction/alkylation steps were performed. Three cystine pairs (Cys11-Cys25, Cys18-Cys29, and Cys24-Cys36) were determined by identification of the resulting peptides. The disulfide pairings of the two adjacent Cys residues (Cys11-Cys25 and Cys24-Cys36) were unambiguously assigned by comparing the derived fragments with the two possible isomers synthesized through a novel disulfide-linking technique. The arrangement of the disulfide bridges in POI was found to be topologically identical to those found for several peptides within the inhibitor cystine knot structural family. Although these peptides share a low primary sequence homology and display a diversity of biological functions, they nonetheless share similarities in their cystine motifs and tertiary structure. The tertiary structure model of POI, which was derived through molecular dynamics and energy minimization studies using restraints with determined disulfide connectivities, suggests that POI is a new class member of the inhibitor cystine-knot structural family.  相似文献   

9.
Growth and differentiation factor 5 (GDF-5) is a homodimeric protein stabilized by a single disulfide bridge between cysteine 465 in the respective monomers, as well as by three intramolecular cysteine bridges within each subunit. A mature recombinant human GDF-5 variant with cysteine 465 replaced by alanine (rhGDF-5 C465A) was expressed in E. coli, purified to homogeneity, and chemically renatured. Biochemical analysis showed that this procedure eliminated the sole interchain disulfide bond. Surprisingly, the monomeric variant of rhGDF-5 is as potent in vitro as the dimeric form. This could be confirmed by alkaline phosphatase assays and Smad reporter gene activation. Furthermore, dimeric and monomeric rhGDF-5 show comparable binding to their specific type I receptor, BRIb. Studies on living cells showed that both the dimeric and monomeric rhGDF-5 induce homomeric BRIb and heteromeric BRIb/BRII oligomers. Our results suggest that rhGDF-5 C465A has the same biological activity as rhGDF-5 with respect to binding to, oligomerization of and signaling through the BMP receptor type Ib.  相似文献   

10.
Hen ovalbumin contains one cystine disulfide (Cys73-Cys120) and four cysteine sulfhydryl groups (Cys11, Cys30, Cys367, and Cys382) in a single polypeptide chain of 385 amino acid residues. To investigate whether or not such a structure is shared by related avian species, the contents of disulfide-involved half-cystine residues and their positions in the primary structure of ovalbumins from five species were compared with those of hen ovalbumin. Ovalbumins were alkylated with a fluorescent dye, IAEDANS, under disulfide-reduced and disulfide-intact conditions and digested with a number of proteolytic enzymes. The sequences were deduced from peptides containing half-cystine residues labeled with the fluorescent dye. The results showed that the number of free cysteine sulfhydryl groups of ovalbumins was different among the species, three for guinea fowl and turkey (Cys11, Cys367, and Cys382); and two for Pekin duck, mallard duck, and Emden goose (Cys11 and Cys331). On the other hand, a single intrachain disulfide bond could be identified from ovalbumins of five species using a combination of peptide mapping and N-terminal amino acid sequencing analysis under reduced and non-reduced conditions, in which the intrachain disulfide bond was like that of hen ovalbumin (Cys73-Cys120). The results also indicated that the variations in amino acid sequences on these peptides containing half-cystine residues bear a close relationship with the phylogeny of the six species.  相似文献   

11.
CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment.  相似文献   

12.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

13.
14.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues and four disulfide bonds. Illumination with near-UV light results in the cleavage of disulfide bridges and in the formation of free thiols. To obtain information about the reaction products, the illuminated protein was carbamidomethylated and digested with trypsin and the peptides were analyzed by mass spectrometry. Peptides containing Cys120Cam, Cys61Cam, or Cys91Cam were detected, as well as two peptides containing a new Cys-Lys cross-link. In one, Cys6 was cross-linked to Lys122, while the cross-link in the second was either a Cys91-Lys79 or Cys73-Lys93 cross-link; however, the exact linkage could not be defined. The results demonstrate photolytic cleavage of the Cys6-Cys120, Cys61-Cys77, and Cys73-Cys91 disulfide bonds. While photolysis of Cys6-Cys120 and Cys73-Cys91 disulfide bonds in GLA has been reported, cleavage of the Cys61-Cys77 disulfide bonds has not been previously detected. To examine the contribution of the individual Trp residues, we constructed the GLA mutants, W26F, W60F, W104F, and W118F, by replacing single Trp residues with phenylalanine (Phe). The substitution of each Trp residue led to less thiol production compared to that for wild-type GLA, showing that each Trp residue in GLA contributed to the photolytic cleavage of disulfide bridges. The specificity was expressed by the nature of the reaction products. No cleavage of the Cys6-Cys120 disulfide bridge was detected when the W26F mutant was illuminated, and no cleavage of the Cys73-Cys91 disulfide bridge was seen following illumination of W26F or W104F. In contrast, Cys61Cam, resulting from the cleavage of the Cys61-Cys77 disulfide bridge, was found following illumination of any of the mutants.  相似文献   

15.
The primary sequence of the N-terminal somatomedin B (SMB) domain of native vitronectin contains 44 amino acids, including a framework of four disulfide bonds formed by 8 closely spaced cysteines in sequence patterns similar to those found in the cystine knot family of proteins. The SMB domain of vitronectin was isolated by digesting the protein with endoproteinase Glu-C and purifying the N-terminal 1-55 peptide by reverse-phase high performance liquid chromatography. Through a combination of techniques, including stepwise reduction and alkylation at acidic pH, peptide mapping with matrix-assisted laser desorption ionization mass spectrometry and NMR, the disulfide bonds contained in the SMB domain have been determined to be Cys(5):Cys(9), Cys(19):Cys(31), Cys(21):Cys(32), and Cys(25):Cys(39). This pattern of disulfides differs from two other connectivities that have been reported previously for recombinant forms of the SMB domain expressed in Escherichia coli. This arrangement of disulfide bonds in the SMB domain from native vitronectin forms a rigid core around the Cys(19): Cys(31) and Cys(21):Cys(32) disulfides. A small positively charged loop is created at the N terminus by the Cys(5): Cys(9) cystine. The most prominent feature of this disulfide-bonding pattern is a loop between Cys(25) and Cys(39) similar to cystine-stabilized alpha-helical structures commonly observed in cystine knots. This alpha-helix has been confirmed in the solution structure determined for this domain using NMR (Mayasundari, A., Whittemore, N. A., Serpersu, E. H., and Peterson, C. B. (2004) J. Biol. Chem. 279, 29359-29366). It confers function on the SMB domain, comprising the site for binding to plasminogen activator inhibitor type-1 and the urokinase receptor.  相似文献   

16.
The aggregating cartilage proteoglycan core protein contains two globular domains near the N terminus (G1 and G2) and one near the C terminus (G3). The G1-G3 domains contain 10, 8, and 10 cysteine residues, respectively. The disulfide assignments of the G1 domain have previously been deduced (Neame, P. J., Christner, J. E., and Baker, J. R. (1987) J. Biol. Chem. 262, 17768-17778) as Cys1-Cys2, Cys3-Cys6, Cys4-Cys5, Cys7-Cys10, and Cys8-Cys9, in which the numbers cited after the half-cystine residues are their relative positions from the N terminus. Here we describe a method for the isolation of disulfide-bonded peptides from tryptic digests of bovine nasal cartilage monomer. Sequence analysis of these peptides has allowed us to confirm the pairings previously determined for the G1 domain and to assign a disulfide pattern for the G2 domain of Cys11-Cys14, Cys12-Cys13, Cys15-Cys18, and Cys16-Cys17, in which the Cys15-Cys18 pairing was deduced indirectly. Similarly, for the G3 domain, a pattern of Cys19-Cys20, Cys21-Cys24, Cys22-Cys23, Cys25-Cys27, and Cys26-Cys28 was assigned, in which the Cys22-Cys23 pair was deduced indirectly. The G2 domain therefore contains disulfide bonding which is characteristic of the tandem repeat structures found in the G1 domain and link protein, and the G3 domain contains the three disulfide linkages previously assigned to the family of C-type animal lectins. The method described here, which combines anion-exchange, cation-exchange, and reversed-phase chromatography, should have broad application to the isolation of disulfide-bonded peptides from other heavily glycosylated proteins and proteoglycans.  相似文献   

17.
Recombinant monoclonal antibodies undergo extensive posttranslational modifications. In this article, we characterize major modifications, separated by cation exchange chromatography, on an immunoglobulin G1 (IgG1) monoclonal antibody (mAb). We found that N-terminal cyclization of glutamine residues to pyroglutamate on the light and heavy chains are the major isoforms resolved during cation exchange chromatography. However, using CEX, we also separated and identified isoforms with unpaired cysteine residues in the VH domain of the molecule (Cys22-Cys96). Omalizumab, a therapeutic anti-IgE antibody, has unpaired cysteine residues in the VH domain between Cys22 and Cys96, and the Fab fragment, containing the unpaired cysteine residues, is reported to have reduced potency. Dynamic interchain disulfide rearrangement, with slow kinetics, was recently reported to take place in serum for an IgG2 molecule and resulted in predictable mature isoforms. Analytical evaluation of our mAb, after recovery from serum, revealed that the unpaired intrachain cysteine residues (Cys22-Cys96) reformed their disulfide bond. The significance of this study is that correct pairing occurred rapidly, and we speculate that thiol molecules such as cysteine, homocysteine, and glutathione in serum provide an environment, outside the endoplasmic reticulum, for correct linkage.  相似文献   

18.
Zhang Z  Boyle PC  Lu BY  Chang JY  Wriggers W 《Biochemistry》2006,45(51):15269-15278
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extra-cellular domains. Human EGF is a small, single-chain protein comprising three distinct loops (A, B, and C), which are connected by three disulfide bridges (Cys6-Cys20, Cys14-Cys31, and Cys33-Cys42). These disulfide bridges are essential for structural stability and biological activity. EGF was extensively studied by disulfide scrambling, an experimental technique for the conformational entrapment of intermediate states, which allows us to study the folding pathway of proteins containing disulfide bonds. The experimental results showed that there is a major 2-disulfide intermediate (denoted EGF-II) and that the native disulfide bonding pattern is less prevalent in one of the mutants. In this article, we investigated for the first time the solution conformations of wild-type EGF, EGF-II, and the mutant S9C through extensive molecular dynamics (MD) simulations in water using both the standard MD technique and a recently developed amplified-collective-motion (ACM) sampling method. Compared to standard MD simulations, we achieved a much more enhanced sampling by the ACM simulations, and the structures were sufficiently relaxed to estimate configurational entropies. The simulation results suggest a predominantly entropic folding pathway governed by the disorder of three functional loop regions. Although EGF-II exhibits two native disulfide bonds (Cys14-Cys31 and Cys33- Cys42), its large configurational entropy inhibits a direct transition to the native structure in the folding process. When Ser9 is mutated into Cys, a non-native disulfide bridge Cys9- Cys20 is slightly more favorable than the native Cys6-Cys20 because a less constrained N-terminus affords larger entropy. Isomers that are functionally less active also exhibit a more localized dynamics of the functional loop regions, which may suggest a possible mechanism for the modulation of EGF activity.  相似文献   

19.
Wilken JA  Bedows E 《Biochemistry》2004,43(17):5109-5118
The intracellular kinetic folding pathway of the human chorionic gonadotropin beta-subunit (hCG-beta) reveals the presence of a disulfide between Cys residues 38-57 that is not detected by X-ray analysis of secreted hCG-beta. This led us to propose that disulfide rearrangement is an essential feature of cystine knot formation during CG-beta folding. To test this, we used disulfide bond formation to monitor progression of intracellular folding intermediates of a previously uncharacterized protein, the CG-beta subunit of cynomolgous macaque (Macaca fascicularis). Like its human counterpart hCG-beta with which it shares 81% identity, macaque (m)CG-beta is a cystine knot-containing subunit that assembles with an alpha-subunit common to all glycoprotein hormone members of its species to form a biologically active heterodimer, mCG, which, like hCG, is required for pregnancy maintenance. An early mCG-beta folding intermediate, mpbeta1, contained two disulfide bonds, one between Cys34 and Cys88 and the other between Cys38 and Cys57. The subsequent folding intermediate, mpbeta2-early, was represented by an ensemble of folding forms that, in addition to the two disulfides mentioned above, included disulfide linkages between Cys9 and Cys57 and between Cys38 and Cys90. These latter two disulfides are those contained within the beta-subunit cystine knot and reveal that a disulfide exchange occurred during the mpbeta2-early folding step leading to formation of the mCG-beta knot. Thus, while defining the intracellular kinetic protein folding pathway of a monkey homologue of CG-beta, we detected the previously predicted disulfide exchange event crucial for CG-beta cystine knot formation and attainment of CG-beta assembly competence.  相似文献   

20.
Functional structure of the somatomedin B domain of vitronectin   总被引:1,自引:0,他引:1  
The N-terminal somatomedin B domain (SMB) of vitronectin binds PAI-1 and the urokinase receptor with high affinity and regulates tumor cell adhesion and migration. We have shown previously in the crystal structure of the PAI-1/SMB complex that SMB, a peptide of 51 residues, is folded as a compact cysteine knot of four pairs of crossed disulfide bonds. However, the physiological significance of this structure was questioned by other groups, who disputed the disulfide bonding shown in the crystal structure (Cys5-Cys21, Cys9-Cys39, Cys19-Cys32, Cys25-Cys31), notably claiming that the first disulfide is Cys5-Cys9 rather than the Cys5-Cys21 bonding shown in the structure. To test if the claimed Cys5-Cys9 bond does exist in the SMB domain of plasma vitronectin, we purified mouse and rat plasma vitronectin that have a Met (hence cleavable by cyanogen bromide) at residue 14, and also prepared recombinant human SMB variants from insect cells with residues Asn14 or Leu24 mutated to Met. HPLC and mass spectrometry analysis showed that, after cyanogen bromide digestion, all the fragments of the SMB derived from mouse or rat vitronectin or the recombinant SMB mutants are still linked together by disulfides, and the N-terminal peptide (residue 1-14 or 1-24) can only be released when the disulfide bonds are broken. This clearly demonstrates that Cys5 and Cys9 of SMB do not form a disulfide bond in vivo, and together with other structural evidence confirms that the only functional structure of the SMB domain of plasma vitronectin is that seen in its crystallographic complex with PAI-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号