首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of the overlap region at the ends of tropomyosin molecules in the properties of regulated thin filaments has been investigated by substituting nonpolymerizable tropomyosin for tropomyosin in a reconstituted troponin-tropomyosin-actomyosin subfragment 1 ATPase assay system. A previous study [Heeley, Golosinka & Smillie (1987) J. Biol. Chem. 262, 9971-9978] has shown that at an ionic strength of 70 mM, troponin will induce full binding of nonpolymerizable tropomyosin to F-actin both in the presence and absence of calcium. At a myosin subfragment 1-to-actin ratio of 2:1 ([actin] = 4 microM) and an ionic strength of 50 mM, comparable levels of ATPase inhibition were observed with increasing levels of tropomyosin or the truncated derivative in the presence of troponin (-Ca2+). Large differences were noted, however, in the activation by Ca2+. Significantly lower ATPase activities were observed with nonpolymerizable tropomyosin and troponin (+Ca2+) over a range of subfragment 1-to-actin ratios from 0.25 to 2.5. The concentration of subfragment 1 required to generate ATPase activities exceeding those seen with actomyosin subfragment 1 alone under these conditions was 3-4-fold greater when nonpolymerizable tropomyosin was used. Similar effects were seen at the much lower ionic strength of 13 mM and are consistent with the reduced ATPase activity with nonpolymerizable tropomyosin observed previously [Walsh, Trueblood, Evans & Weber (1985) J. Mol. Biol. 182, 265-269] at low ionic strength and a subfragment 1-to-actin ratio of 1:100. Little cooperativity in activity as a function of subfragment 1 concentration with either intact tropomyosin or its truncated derivative was observed under the present conditions. Further studies are directed towards an understanding of these effects in terms of the two-state binding model for the attachment of myosin heads to regulated thin filaments.  相似文献   

2.
The mechanism of regulation of actomyosin subfragment 1 ATPase   总被引:9,自引:0,他引:9  
The mechanism of regulation of actin-subfragment 1 nucleoside triphosphatase is described in terms of the rate and equilibrium constants of a relatively simple kinetic scheme: (Formula: see text) where T, D, and Pi are nucleoside triphosphate, nucleoside diphosphate, and inorganic phosphate, respectively; Ka, Kb, and Kc are association constants; the ki are first-order rate constants; A is regulated actin (actin-tropomyosin-troponin); and M is subfragment 1. Calcium binding to regulated actin had little effect on step 2; k2 was almost unaffected, and k-2 increased, at most, 2-fold. k-1 and k3 increased 10-20-fold for ATP and 3-5-fold for 1-N6-ethenoadenosine triphosphate as substrates. Kb and Kc increased by less than 50%, whereas Ka increased 6-10-fold. The primary effect in regulation is on the rate of a conformational change which determines the rate of dissociation of ligands bound to the active site. The measurements probably underestimate the ratio of rate constants of product dissociation for active and relaxed states of actin because of heterogeneity. The kinetic evidence can be explained by a partial steric blocking mechanism or by a conformational (nonsteric) mechanism.  相似文献   

3.
The effect of platelet tropomyosin on the ATPase activity of a muscle actin-myosin subfragment 1 system has been examined in 30 mM KCl, 5 mM MgCl2, 2 mM ATP, 0.1 mM EGTA, 2 mM Tris, pH 7.8. Whereas muscle tropomyosin inhibits the activity by 60%, the platelet protein had no effect. Addition of muscle troponin in the absence of Ca2+ to the system inhibited the activity by up to 80% irrespective of whether muscle or platelet tropomyosin was used. The release of this inhibition by the addition of Ca2+ was much less in the case of platelet tropomyosin. This may result from the fact that platelet tropomyosin aggregates poorly in a head-to-tail manner and interacts only weakly with muscle troponin-T. In the presence of troponin-I and platelet tropomyosin, inhibition of the ATPase activity was 80%. This inhibition was largely released by the addition of troponin-C irrespective of the presence of Ca2+. The addition of brain calmodulin, however, released the inhibition in the presence of calcium but not in its absence. These effects can be correlated with the binding or lack of binding of the platelet tropomyosin to the actin filament.  相似文献   

4.
The ATPase activity of acto-myosin subfragment 1 (S-1) was measured in the presence of smooth and skeletal muscle tropomyosins over a wide range of ionic strengths (20-120 mM). In contrast to the 60% inhibitory effect caused by skeletal muscle tropomyosin at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on ionic strength. At low ionic strength (20 mM), smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM), it potentiates the ATPase activity 3-fold. All of these ATPase activities were measured at very low ratios of S-1 to actin, under conditions at which a 4-fold increase in S-1 concentration did not change the specific activity of the tropomyosin-acto.S-1 ATPase. Therefore, the potentiation of the ATPase activity by smooth muscle tropomyosin at high ionic strength cannot be explained by bound S-1 heads cooperatively turning on the tropomyosin-actin complex. To determine whether the fully potentiated rates are different in the presence of smooth muscle and skeletal muscle tropomyosins, S-1 which was extensively modified by N-ethylmaleimide was added to the ATPase assay to attain high ratios of S-1 to actin. The results showed that, under all conditions, the fully potentiated rates are the same for both tropomyosins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Actin has been purified from smooth muscle (chicken gizzard) by two different procedures and its activation of smooth muscle myosin Mg2+-ATPase activity compared with that achieved with rabbit skeletal muscle actin. The procedure of Pardee and Spudich (Methods Enzymol. (1982) 85, 164-181) for the purification of rabbit skeletal muscle actin is readily applicable to the isolation of chicken gizzard actin, enabling large quantities to be purified in two days. Smooth muscle actin could be successfully stored as F-actin at -80 degrees C and survived freezing and thawing at least twice. Smooth muscle actin activated myosin Mg2+-ATPase to a higher level than its skeletal muscle counterpart (77.9 nmol Pi/min/mg myosin vs 48.1 nmol Pi/min/mg myosin).  相似文献   

6.
7.
A synthetic peptide corresponding to a sequence 632-642 (S632-642) on the myosin subfragment 1 (S-1) heavy chain and spanning the 50/20 kDa junction of S-1 binds to actin in the presence and absence of S-1. The binding of 1.0 mole of peptide per actin causes almost complete inhibition of actomyosin ATPase activity and only partial inhibition of S-1 binding to actin. The binding of S632-642 to the N-terminal segment of actin is supported by competitive carbodiimide cross-linking of S-1 and S632-642 to actin and the catalytic properties of cross-linked acto-S-1 and actin-peptide complexes. These results show that the sequence 632-642 on S-1 is an autonomous binding site for actin and confirm the catalytic importance of its interactions with the N-terminal segment of actin.  相似文献   

8.
Structural studies of the class I myosin, MyoE, led to the predictions that loop 4, a surface loop near the actin-binding region that is longer in class I myosins than in other myosin subclasses, might limit binding of myosins I to actin when actin-binding proteins, like tropomyosin, are present, and might account for the exclusion of myosin I from stress fibers. To test these hypotheses, mutant molecules of the related mammalian class I myosin, Myo1b, in which loop 4 was truncated (from an amino acid sequence of RMNGLDES to NGLD) or replaced with the shorter and distinct loop 4 found in Dictyostelium myosin II (GAGEGA), were expressed in vitro and their interaction with actin and with actin-tropomyosin was tested. Saturating amounts of expressed fibroblast tropomyosin-2 resulted in a decrease in the maximum actin-activated Mg2+-ATPase activity of wild-type Myo1b but had little or no effect on the actin-activated Mg2+-ATPase activity of the two mutants. In motility assays, few actin filaments bound tightly to Myo1b-WT-coated cover slips when tropomyosin-2 was present, whereas actin filaments both bound and were translocated by Myo1b-NGLD or Myo1b-GAGEGA in both the presence and absence of tropomyosin-2. When expressed in mammalian cells, like the wild type, the mutant myosins were largely excluded from tropomyosin-containing actin filaments, indicating that in the cell additional factors besides loop 4 determine targeting of myosins I to specific subpopulations of actin filaments.  相似文献   

9.
10.
Equilibrium binding studies were used to determine the binding constant of vanadate ion (Vi), to the complex of actomyosin subfragment 1 (S1) with ADP and Vi and of actin to the myosin S1.ADP.Vi complex. The proteins used were obtained from rabbit skeletal muscle. Pre-steady-state measurements were also performed to determine the rates of Vi association and dissociation from the actomyosin S1.ADP.Vi complex. Using these measured values in a simple model, the steady-state actomyosin S1 ATPase activity was predicted over a range of Vi concentrations. This model predicted that Vi would have little effect on the actomyosin S1 ATPase activity. In agreement with this prediction, the measured ATPase activity of actomyosin S1 was not greatly inhibited by Vi, except at high concentrations at which polymeric species of Vi may occur (greater than 900 microM).  相似文献   

11.
J A Biosca  T E Barman  F Travers 《Biochemistry》1984,23(11):2428-2436
The initial steps by which ATP dissociates and binds to actomyosin subfragment 1 (acto-SF-1) were studied. Two techniques were used: stopped-flow (for acto-SF-1 dissociation kinetics) and rapid-flow quench with ATP chase quenching (for ATP binding kinetics). The experiments were carried out in 40% ethylene glycol-5 mM KCI, pH 8, at 15 degrees C. Under these conditions, the binding of SF-1 to actin remains very tight. As with SF-1, the ATP chase technique could be used, first, to titrate active sites and, second, to study the kinetics of ATP binding to acto-SF-1. The kinetic constants obtained were compared with those of SF-1 alone and with the acto-SF-1 dissociation kinetics under identical conditions. The kinetics of the acto-SF-1 dissociation did not vary with the actin to SF-1 ratio, but the ATP binding kinetics did, and a maximum value was reached at a mole ratio of 2.5. At high ATP (100 microM), kdiss = 300 s-1, which compares with 49 s-1 and 13 s-1 for the ATP binding kinetics for acto-SF-1 (actin to SF-1 = 1:1) and SF-1, respectively. As with SF-1, the ATP binding to acto-SF-1 follows a hyperbolic law with the ATP concentration. This suggests a rapid equilibrium (K) followed by an essentially irreversible step (k).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Myelin basic protein (MBP) binds to both skeletal muscle and brain tropomyosin resulting in the formation of paracrystalline tactoids in the absence of divalent cations and at neutral pH. Both types of tropomyosin reduce the inhibition of the ATPase activity of actomyosin caused by MBP. On the other hand, MBP alters the effect of both brain and skeletal muscle tropomyosins on the actomyosin ATPase, even though MBP and tropomyosin bind independently to actin. We conclude that MBP cannot substitute for troponin I in the regulation of the action of tropomyosin on actin.  相似文献   

13.
14.
15.
The effects of nitric oxide donor sodium nitroprusside (SNP) on ATPase activities of smooth muscle actomyosin and myosin were investigated. The effect of SNP on actomyosin ATPase activity was biphasic: the low concentration of this reagent increased the actomyosin ATPase activity while the high concentration exerted opposite effect. These effects were similar to those induced by the specific thiol-alkylating agent N-ethylmaleimide. These data demonstrate that nitric oxide exert the direct effect on smooth muscle contractile proteins. Such effect may be involved in physiological action of NO on smooth muscle.  相似文献   

16.
Y Ishii  S S Lehrer 《Biochemistry》1985,24(23):6631-6638
The fluorescence of pyrene-TM [rabbit skeletal tropomyosin (TM) labeled at Cys with N-(1-pyrenyl)maleimide] consists of monomer and excimer bands [Betcher-Lange, S., & Lehrer, S.S. (1978) J. Biol. Chem. 253, 3757-3760]; an increase in excimer fluorescence with temperature is due to a shift in equilibrium from a chain-closed state (N) to a chain-open state (X) associated with a helix pretransition [Graceffa, P., & Lehrer, S.S. (1980) J. Biol. Chem. 255, 11296-11300]. In this study, we show that the presence of appreciable excimer fluorescence at temperatures below the N----X pretransition (initial excimer) is due to perturbation of the TM chain-chain interaction by the pyrenes at Cys-190. Fluorescence and ATPase titrations indicated that the label caused a decrease in TM binding to F-actin primarily due to reduced end to end TM interactions on the actin filament. Under conditions where pyrene-TM was bound to F-actin, however, the excimer fluorescence did not increase with temperature, indicating that F-actin stabilizes tropomyosin by inhibiting the N----X transition. The binding of myosin subfragment 1 (S1) to pyrene-TM-F-actin at low ratios to actin caused time-dependent changes in fluorescence. After equilibrium was reached, the initial excimer fluorescence was markedly reduced and remained constant over the pretransition temperature range. Further stabilization of tropomyosin conformation on F-actin is therefore associated with S1 binding. Effects of the binding of S1 to the F-actin-tropomyosin thin filament on the state of tropomyosin were studied by monitoring the monomer fluorescence of pyrene-TM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A kinetic study of the ATPase reactions catalyzed by myosin and actomyosin was carried out by varying the concentrations of ATP and 2,4-dinitrophenol (DNP). Mg-ATPase of myosin in the initial burst and that of actomyosin were both inhibited competitively by DNP. The dissociation contants for the DNP-myosin interaction (Ki) were estimated to be very similar, that is, 4.2 mM in the initial burst of ATP splitting, and 3.3 mM for the actomyosin ATPase. It is therefore suggested that DNP acts at the same site when it inhibits the burst splitting of ATP and the actomyosin ATPase. In contrast, Mg,-Ca-, and EDTA-ATPase activities of myosin in the steady state were all affected uncompetitively by DNP. Moreover, the Ki value for Mg-ATPase of myosin in the steady state was found to be 31 mM, which is much higher than those mentioned above for the initial burst and actomyosin ATPase. It is therefore suggested that the site at which DNP acts to inhibit the burst splitting of ATP is different from the site at which DNP acts to affect Mg-, Ca-, and EDTA-ATPases in the steady state.  相似文献   

18.
Smooth muscle contraction is controlled in part by the state of phosphorylation of myosin. A recently discovered actin and calmodulin-binding protein, named caldesmon, may also be involved in regulation of smooth muscle contraction. Caldesmon cross-links actin filaments and also inhibits actin-activated ATP hydrolysis by myosin, particularly in the presence of tropomyosin. We have studied the effect of caldesmon on the rate of hydrolysis of ATP by skeletal muscle myosin subfragment-1, a system in which phosphorylation of the myosin is not important in regulation. Caldesmon is a very effective inhibitor of ATP hydrolysis giving up to 95% inhibition. At low ionic strength (approximately 20 mM) this effect does not require smooth muscle tropomyosin, whereas at high ionic strength (approximately 120 mM) tropomyosin enhances the inhibitory activity of caldesmon at low caldesmon concentrations. Cross-linking of actin is not essential for inhibition of ATP hydrolysis to occur since at high ionic strength there is very little cross-linking as determined by a low speed sedimentation assay. Under all conditions examined, the decrease in the rate of ATP hydrolysis is accompanied by a decrease in the binding of myosin subfragment-1 to actin. Furthermore, caldesmon weakens the equilibrium binding of myosin subfragment-1 to actin in the presence of pyrophosphate. We conclude that caldesmon has a general weakening effect on the binding of skeletal muscle myosin subfragment-1 to actin and that this weakening in binding may be responsible for inhibition of ATP hydrolysis.  相似文献   

19.
The adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) induced dissociation of actomyosin subfragment 1 (S1) has been investigated by monitoring the light scattering changes that occur on dissociation. We have shown that ATP gamma S dissociates acto-S1 by a mechanism similar to that of ATP but at a rate 10 times slower. The maximum rate of dissociation is limited by an isomerization of the ternary actin-S1-nucleotide complex, which has a rate of 500 s-1 for ATP gamma S and an estimated rate of 5000 s-1 for ATP (20 degrees C, 0.1 M KCl, pH 7.0). The activation energy for the isomerization is the same for ATP and ATP gamma S, and both show a break in the Arrhenius plot at 5 degrees C. The reaction between acto-S1 and ATP was also followed by the fluorescence of a pyrene group covalently attached to Cys-374. We show that the fluorescence of the pyrene group reports the isomerization step and not actin dissociation. The characterization of this isomerization is discussed in relation to force-generating models of the actomyosin cross-bridge cycle.  相似文献   

20.
The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.0 mM magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP) and calculated that the ability of acto-S-1-AMPPNP complexes to cause potentiation must have been very similar to that of nucleotide-free acto-S-1 complexes. In extension of earlier studies, potentiated acto-S-1 ATPase activity was characterized by an increase in Vmax and, as observed before, a lowering of the apparent Km for subfragment 1 (S-1). Under conditions similar to those that produce the potentiation of acto-S-1 ATPase activity, the apparent actin binding constant of nucleotide-free S-1 was increased about 3-5 fold while the apparent binding constant of AMPPNP to actin-bound S-1 was reduced to (2.5-10) x 10(2) M-1 compared to that of about (1-5) x 10(3) M-1 for S-1 bound to tropomyosin-free actin. Under the same conditions, the apparent binding constant of S-1-AMPPNP to actin was not increased. We suggest that a potentiated state of the tropomyosin actin filament is produced by the cooperative action of acto-S-1 or acto-S-1-AMPPNP complexes. The potentiated state is characterized by an increase in the Vmax of the acto-S-1 ATPase activity, increased binding constants for S-1 and S-1-ADP, and increased binding of tropomyosin to actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号