首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A model of bubble growth leading to xylem conduit embolism   总被引:1,自引:0,他引:1  
The dynamics of a gas bubble inside a water conduit after a cavitation event was modeled. A distinction was made between a typical angiosperm conduit with a homogeneous pit membrane and a typical gymnosperm conduit with a torus-margo pit membrane structure. For conduits with torus-margo type pits pit membrane deflection was also modeled and pit aspiration, the displacement of the pit membrane to the low pressure side of the pit chamber, was found to be possible while the emboli was still small. Concurrent with pit aspiration, the high resistance to water flow out of the conduit through the cell walls or aspirated pits will make the embolism process slow. In case of no pit aspiration and always for conduits with homogeneous pit membranes, embolism growth is more rapid but still much slower than bubble growth in bulk water under similar water tension. The time needed for the embolism to fill a whole conduit was found to be dependent on pit and cell wall conductance, conduit radius, xylem water tension, pressure rise in adjacent conduits due to water freed from the embolising conduit, and the rigidity and structure of the pits in the case of margo-torus type pit membrane. The water pressure in the conduit hosting the bubble was found to occur almost immediately after bubble induction inside a conduit, creating a sudden tension release in the conduit, which can be detected by acoustic and ultra-acoustic monitoring of xylem cavitation.  相似文献   

2.
The centrifuge method for measuring the resistance of xylem to cavitation by water stress was modified to also account for any additional cavitation that might occur from a freeze-thaw cycle. A strong correlation was found between cavitation by freezing and mean conduit diameter. On the one extreme, a tracheid-bearing conifer and diffuse-porous angiosperms with small-diameter vessels (mean diameter <30 μm) showed no freezing-induced cavitation under modest water stress (xylem pressure = −0.5 MPa), whereas species with larger diameter vessels (mean >40 μm) were nearly completely cavitated under the same conditions. Species with intermediate mean diameters (30–40 μm) showed partial cavitation by freezing. These results are consistent with a critical diameter of 44 μm at or above which cavitation would occur by a freeze–thaw cycle at −0.5 MPa. As expected, vulnerability to cavitation by freezing was correlated with the hydraulic conductivity per stem transverse area. The results confirm and extend previous reports that small-diameter conduits are relatively resistant to cavitation by freezing. It appears that the centrifuge method, modified to include freeze–thaw cycles, may be useful in separating the interactive effects of xylem pressure and freezing on cavitation.  相似文献   

3.
Xylem traits were examined among 22 arid-land shrub species, including measures of vessel dimensions and pit area. These structural measures were compared with the xylem functional traits of transport efficiency and safety from cavitation. The influence of evolution on trait relationships was examined using phylogenetic independent contrasts (PICs). A trade-off between xylem safety and efficiency was supported by a negative correlation between vessel dimensions and cavitation resistance. Pit area was correlated with cavitation resistance when cross species data were examined, but PICs suggest that these traits have evolved independently of one another. Differences in cavitation resistance that are not explained by pit area may be related to differences in pit membrane properties or the prevalence of tracheids, the latter of which may alter pit area through the addition of vessel-to-tracheid pits or through changes in xylem conduit connectivity. Some trait relationships were robust regardless of species ecology or evolutionary history. These trait relationships are likely to be the most valuable in predictive models that seek to examine anatomical and functional trait relationships among extant and fossil woods and include the relationship among hydraulic conductivity and vessel diameter, between vessel diameter and vessel length, and between hydraulic conductivity and wood density.  相似文献   

4.
Vulnerability of xylem conduits to cavitation and embolism was compared in two species of Rhizophoraceae, the mangrove Rhizophora mangle L. and the tropical moist-forest Cassipourea elliptica (Sw.) Poir. Cavitation (water column breakage preceeding embolism) was monitored by ultrasonic detection; embolism was quantified by its reduction of xylem hydraulic conductivity. Acoustic data were not predictive of loss in hydraulic conductivity, probably because signals from cavitating vessels were swamped by more numerous ones from cavitating fibers. Rhizophora mangle was the less vulnerable to embolism of the two species, losing 80% of its hydraulic conductivity between – 6.0 and – 7.0 MPa. Cassipourea elliptica lost conductivity in linear proportion to decreasing xylem pressure from – 0.5 to – 7.0 MPa. Species vulnerability correlated closely with physiological demands of habitat; the mangrove Rhizophora mangle had field xylem pressures between – 2.5 and – 4.0 MPa. whereas the minimum for Cassipourea elliptica was – 1.6 MPa. Differences in vulnerability between species could be accounted for by differences in the measured air permeability of intervessel pit membranes. According to this explanation, embolism occurs when air enters a water-filled vessel from a neighboring air-filled one via pores in shared pit membranes.  相似文献   

5.
Water stress induced cavitation and embolism in some woody plants   总被引:30,自引:0,他引:30  
A comparison was made of the relative vulnerability of xylem conduits to cavitation and embolism in three species [ Thuja occidentalis L., Tsuga canadensis (L.) Carr. and Acer saccharum Marsh.]. Waterlogged samples of wood were air dehydrated while measuring relative water loss, loss of hydraulic conductance, cumulative acoustic emissions (= cavitations) and xylem water potential. Most cavitation events and loss of hydraulic conductance occurred while water potential declined from – 1 to –6 MPa. There were differences in vulnerability between species. Other people have hypothesized that large xylem conduits (e.g. vessels) should be more vulnerable to cavitations than small conduits (e.g. tracheids). Our findings are contrary to this hypothesis. Under water stress, the vessel bearing wood retained water better than tracheid bearing wood. However, within a species large conduits were more prone to cavitation than small conduits.  相似文献   

6.
Although cavitation and refilling cycles could be common in plants, it is unknown whether these cycles weaken the cavitation resistance of xylem. Stem or petiole segments were tested for cavitation resistance before and after a controlled cavitation-refilling cycle. Cavitation was induced by centrifugation, air drying of shoots, or soil drought. Except for droughted plants, material was not significantly water stressed prior to collection. Cavitation resistance was determined from "vulnerability curves" showing the percentage loss of conductivity versus xylem pressure. Two responses were observed. "Resilient" xylem (Acer negundo and Alnus incana stems) showed no change in cavitation resistance after a cavitation-refilling cycle. In contrast, "weakened" xylem (Populus angustifolia, P. tremuloides, Helianthus annuus stems, and Aesculus hippocastanum petioles) showed considerable reduction in cavitation resistance. Weakening was observed whether cavitation was induced by centrifugation, air dehydration, or soil drought. Observations from H. annuus showed that weakening was proportional to the embolism induced by stress. Air injection experiments indicated that the weakened response was a result of an increase in the leakiness of the vascular system to air seeding. The increased air permeability in weakened xylem could result from rupture or loosening of the cellulosic mesh of interconduit pit membranes during the water stress and cavitation treatment.  相似文献   

7.
Measurements of xylem conduit length and width and the distribution of xylem conduit ends were made in inter-nodes (I), nodes (N) and twig junctions (J) of 1-, 2- and 3-year-old twigs of plants of Quercus cerris L. Parallel measurements were also made of the loss of hydraulic conductivity of twigs subjected to pressure differentials across conduit pit membranes, equalling the leaf water potential at the turgor loss point. The loss of theoretical hydraulic conductivity was calculated as the ratio of i esivr4 (where r is the conduit radius) of the non-conducting conduits to that of all the conduits in the outermost wood ring of I, N and J. Stem zones such as 1-year-old nodes and junctions were localized with narrower and shorter xylem conduits and with higher percentages of conduit ends than internodes. Such ‘constricted zonesrsquo; were less vulnerable to embolism than internodes. Latewood conduits were consistently narrower, shorter and less vulnerable to embolism than earlywood ones. A positive relation therefore existed between conduit diameter and length and vulnerability to embolism. The overall vulnerability to embolism of Q. cerris plants is discussed in terms of xylem conduit width and length and of the distribution of conduit ends.  相似文献   

8.
The relation between xylem vessel age and vulnerability to cavitation of sugar maple (Acer saccharum Marsh.) was quantified by measuring the pressure required to force air across bordered pit membranes separating individual xylem vessels. We found that the bordered pit membranes of vessels located in current year xylem could withstand greater applied gas pressures (3.8 MPa) compared with bordered pit membranes in vessels located in older annular rings (2.0 MPa). A longitudinal transect along 6-year-old branches indicated that the pressure required to push gas across bordered pit membranes of current year xylem did not vary with distance from the growing tip. To understand the contribution of age-related changes in vulnerability to the overall resistance to cavitation, we combined data on the pressure thresholds of individual xylem vessels with measurements of the relative flow rate through each annual ring. The annual ring of the current year contributed only 16% of the total flow measured on 10-cm-long segments cut from 6-year-old branches, but it contributed more than 70% of the total flow when measured through 6-year-old branches to the point of leaf attachment. The vulnerability curve calculated using relative flow rates measured on branch segments were similar to vulnerability curves measured on 6-year-old branches (pressure that reduces hydraulic conductance by 50% = 1.6-2.4 MPa), whereas the vulnerability curve calculated using relative flow rates measured on 6-year-old branches were similar to ones measured on the extension growth of the current year (pressure that reduces hydraulic conductance by 50% = 3.8 MPa). These data suggest that, in sugar maple, the xylem of the current year can withstand larger xylem tensions than older wood and dominates water delivery to leaves.  相似文献   

9.
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.  相似文献   

10.
Efficient water transport from the soil to the leaves is essential for plant function, while building and maintaining the water transport structure in the xylem require a major proportion of the assimilated carbon of the tree. Xylem transport also faces additional challenges as water in the xylem is under tension and therefore cavitation cannot be completely avoided. We constructed a model that calculates the xylem structure that maximizes carbon-use efficiency while simultaneously taking into account pit structure in increasing the resistance to water transport and constricting the spreading of embolisms. The optimal xylem structure predicted by the model was found to correspond well to the generally observed trends: xylem conduits grew in size from the apex towards the base while simultaneously decreasing in number, and vulnerability to cavitation increased with conduit size. These trends were caused primarily by the axial water potential gradient in the xylem. The pits have to be less porous near the apex where water potential is lower to restrict the spreading of embolisms, while whole-plant carbon-use efficiency demands that conduit size decreases and conduit number increases simultaneously. The model predictions remained qualitatively the same regardless of the exact optimality criterion used for defining carbon-use efficiency.  相似文献   

11.
Embolisms decrease plant hydraulic conductance and therefore reduce the ability of the xylem to transport water to leaves provided that embolized conduits are not refilled. However, as a xylem conduit is filled with gas during cavitation, water is freed to the transpiration stream and this transiently increases xylem water potential. This capacitive effect of embolism formation on plant function has not been explicitly quantified in the past. A dynamic model is presented that models xylem water potential, xylem sap flow and cavitation, taking into account both the decreasing hydraulic conductance and the water release effect of xylem embolism. The significance of the capacitive effect increases in relation to the decreasing hydraulic conductance effect when transpiration rate is low in relation to the total amount of water in xylem conduits. This ratio is typically large in large trees and during drought.  相似文献   

12.
Hacke U  Sauter JJ 《Plant physiology》1996,111(2):413-417
Variation in vulnerability to xylem cavitation was measured within individual organs of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Cavitation was quantified by three different techniques: (a) measuring acoustic emissions, (b) measuring loss of hydraulic conductance while air-dehydrating a branch, and (c) measuring loss of hydraulic conductance as a function of positive air pressure injected into the xylem. All of these techniques gave similar results. In Populus, petioles were more resistant than branches, and branches were more resistant than roots. This corresponded to the pattern of vessel width: maximum vessel diameter in 1- to 2-year-old roots was 140 [mu]m, compared to 65 and 45 [mu]m in rapidly growing 1-year-old shoots and petioles, respectively. Cavitation in Populus petioles started at a threshold water potential of -1.1 MPa. The lowest leaf water potential observed was -0.9 MPa. In Alnus, there was no relationship between vessel diameter and the cavitation response of a plant organ. Although conduits were narrower in petioles than in branches, petioles were more vulnerable to cavitation. Cavitation in petioles was detected when water potential fell below -1.2 MPa. This value equaled midday leaf water potential in late June. As in Populus, roots were the most vulnerable organ. The significance of different cavitation thresholds in individual plant organs is discussed.  相似文献   

13.
Use of centrifugal force in the study of xylem cavitation   总被引:17,自引:4,他引:13  
Two methods were evaluated for using centrifugal force to measurethe occurrence of cavitation as a function of negative pressuresin xylem. The general protocol was to measure the hydraulicconductivity of xylem segments (stem or root pieces) beforeand after centring them on a centrifuge rotor and spinning themabout their long axis to generate negative xylem pressure. Thepercentage decrease in conductivity from the initial to finalmeasurement was used to quantify the embolism resulting fromcavitation during spinning. In one approach, segments were spunwith their ends exposed to air. This method could only be usedwhen xylem conduits were much shorter than the segment. Resultsfrom an angiosperm (Betula occidentalis) and a gymnosperm (AblesIasiocarpa) corresponded to previous observations of embolismcaused by air dehydration where negative pressure was measuredwith the pressure chamber. Results also agreed with embolismcaused by injection of air into the xylem, in support of theair-seeding hypothesis for cavitation. In a second approach,segments were spun in a rotor designed to keep the segment endsimmersed in water during spinning. This gave the same resultsas for non-immersed segments. Immersing the segment ends allowedmeasurements on any material, regardless of conduit length,as demonstrated for roots of B. occidentalis. The chief advantageof the centrifugal force method is the rapidity and precisionwith which any desired xylem pressure can be imposed. Key words: Cavitation, embolism, drought stress, water relations, water transport  相似文献   

14.
"Cavitation fatigue" is the increased susceptibility of a xylem conduit to cavitation as a result of its prior cavitation. It was investigated whether cavitation fatigue induced in vivo could be repaired in intact plants. Sunflowers (Helianthus annuus L.) were subjected to soil drought in the greenhouse. Native embolism and vulnerability to cavitation was measured in well-watered controls and after 5 d and 10 d of controlled drought. A dramatic cavitation fatigue was observed where droughted xylem that was refilled in the laboratory developed up to 60 PLC (percentage loss of hydraulic conductivity) at -1 MPa versus only 5.2 PLC in non-droughted controls. Rewatered plants showed the complete reversal of cavitation fatigue over 4 d. Reversal of fatigue was correlated with the refilling of embolized vessels in the intact plants (r(2)=0.91, P<0.01), suggesting that xylem transport to fatigued vessels was required for their repair. The in vivo reversal of fatigue was partially duplicated in excised stem segments by perfusing them with root exudates from droughted (DR) and well-watered (WW) plants. The DR exudate had a greater effect, and this was associated with a greater pH in the DR versus WW saps, but there was no difference in total cation concentration. Perfusions with 2 mM CaCl(2) and KCl solutions also partially reversed cavitation fatigue as opposed to no effect with deionized water, suggesting a role of ions in addition to a pH effect. It is suspected that fatigue is caused by stretching and partial disruption of linkages between cellulose microfibrils in inter-conduit pit membranes during air seeding, and that the reversal of fatigue involves restoring these linkages by ingredients in xylem sap.  相似文献   

15.
冰冻胁迫下树木管状分子内腔隙和栓塞的形成及其修复   总被引:2,自引:0,他引:2  
许多树木管状分子细胞的细胞壁在冰冻期间并不随细胞内的水分迁移到细胞外冰晶上而塌陷。此时细胞内产生负压,负压的产生引起腔隙的形成,腔隙又会引起栓塞,导致树木内水分运输受阻。冻融循环可导致腔隙和栓塞的形成,或者冰冻之后,温度急剧回升时树木组织内的冰晶升华所致。在春季树木的根压得到恢复,从而使腔隙和栓塞部分消除,水分运输又得以畅勇。冰冻胁迫对在高纬度和中高纬度的某些地区的木的生长造成很大的危害,管状分子内腔隙和栓塞的形成就是其中之一,也是引起树木生长衰退或死亡的主要原因。本文对腔隙和栓塞的形成的原因,机理及其恢复进行了综述。  相似文献   

16.
? Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. ? This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. ? Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. ? Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics.  相似文献   

17.
Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.  相似文献   

18.
Ice formation in the xylem sap produces air bubbles that under negative xylem pressures may expand and cause embolism in the xylem conduits. We used the centrifuge method to evaluate the relationship between freeze-thaw embolism and conduit diameter across a range of xylem pressures (Px) in the conifers Pinus contorta and Juniperus scopulorum. Vulnerability curves showing loss of conductivity (embolism) with Px down to -8 MPa were generated with versus without superimposing a freeze-thaw treatment. In both species, the freeze-thaw plus water-stress treatment caused more embolism than water stress alone. We estimated the critical conduit diameter (Df) above which a tracheid will embolize due to freezing and thawing and found that it decreased from 35 microm at a Px of -0.5 MPa to 6 microm at -8 MPa. Further analysis showed that the proportionality between diameter of the air bubble nucleating the cavitation and the diameter of the conduit (kL) declined with increasingly negative Px. This suggests that the bubbles causing cavitation are smaller in proportion to tracheid diameter in narrow tracheids than in wider ones. A possible reason for this is that the rate of dissolving increases with bubble pressure, which is inversely proportional to bubble diameter (La Place's law). Hence, smaller bubbles shrink faster than bigger ones. Last, we used the empirical relationship between Px and Df to model the freeze-thaw response in conifer species.  相似文献   

19.
Tree hydraulic architecture exhibits patterns that propagate from tissue to tree scales. A challenge is to make sense of these patterns in terms of trade-offs and adaptations. The universal trend for conduits per area to decrease with increasing conduit diameter below the theoretical packing limit may reflect the compromise between maximizing the area for conduction versus mechanical support and storage. Variation in conduit diameter may have two complementary influences: one being compromises between efficiency and safety and the other being that conduit tapering within a tree maximizes conductance per growth investment. Area-preserving branching may be a mechanical constraint, preventing otherwise more efficient top-heavy trees. In combination, these trends beget another: trees have more, narrower conduits moving from trunks to terminal branches. This pattern: (1) increases the efficiency of tree water conduction; (2) minimizes (but does not eliminate) any hydraulic limitation on the productivity or tissue growth with tree height; and (3) is consistent with the scaling of tree conductance and sap flow with size. We find no hydraulic reason why tree height should scale with a basal diameter to the two-thirds power as recently claimed; it is probably another mechanical constraint as originally proposed. The buffering effect of capacitance on the magnitude of transpiration-induced xylem tension appears to be coupled to cavitation resistance, possibly alleviating safety versus efficiency trade-offs.  相似文献   

20.
Xylem cavitation in plants is thought to be caused by a loss of adhesion at the conduit wall surface because a rupture in the body of the water column was implicitly ruled out by an experiment by Lyman J. Briggs with Z-tube capillaries. However, Briggs reported a drastic increase in cavitation pressure of water below 5 degrees C which, if it were also true in xylem conduits, would suggest that water transport in plants could be limited by water cohesion at low temperature. In this study we have repeated Briggs' experiment using stem segments. Xylem vulnerability curves were obtained with a centrifuge technique at 1, 25 and 50 degrees C on yew (Taxus baccata). Contrary to Briggs' finding, vulnerability to cavitation, measured as per cent loss conductance, did not increase sharply at 1 degrees C and was even less than at 25 degrees C and 50 degrees C. Moreover, the onset of cavitation in yew at 1 degrees C was measured at a much more negative pressure than Briggs' value. This points out an artefact in Brigg's experiment at low temperature possibly related to imperfections in the tube walls which act as cavitation nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号