首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have employed electron-nuclear double resonance (ENDOR) spectroscopy to study the 57Fe hyperfine interactions in the bridged-siroheme [4Fe-4S] cluster that forms the catalytically active center of the two-electron-reduced hemoprotein subunit of Escherichia coli NADPH-sulfite reductase (SiR2-). Previous electron paramagnetic resonance (EPR) and M?ssbauer studies have shown that this enzyme oxidation state can exist in three distinct spectroscopic forms: (1) a "g = 2.29" EPR species that predominates in unligated SiR2-, in which the siroheme Fe2+ is believed to be in an S = 1 state; (2) a "g = 4.88" type of EPR species that predominates in SiR2- in the presence of small amounts of guanidinium sulfate, in which the siroheme Fe2+ is in an S = 2 state; and (3) a classical "g = 1.94" type of EPR species that is seen in SiR2- ligated with CO, in which the siroheme Fe2+ is in an S = 0 state. In all three species, the cluster is in the [4Fe-4S]1+ state, and two distinct types of Fe site are seen in M?ssbauer spectroscopy. ENDOR studies confirm the M?ssbauer assignments for the cluster 57Fe in the g = 1.94 state, with A values of 37, 37, and 32 MHz for site I and ca. 19 MHz for site II. The hyperfine interactions are not too different on the g = 2.29 state, with site I Fe showing more anisotropic A values of 32, 24, and 20 MHz (site II was not detected).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

3.
We have performed ENDOR spectroscopy at microwave frequencies of 9 and 35 GHz at 2 K on the reduced Rieske-type [2Fe-2S] cluster of phthalate dioxygenase (PDO) from Pseudomonas cepacia. Four samples have been examined: (1) 14N (natural abundance); (2) uniformly 15N labeled; (3) [15N]histidine in a 14N background; (4) [14N]histidine in a 15N background. These studies establish unambiguously that two of the ligands to the Rieske [2Fe-2S] center are nitrogens from histidine residues. This contrasts with classical ferredoxin-type [2Fe-2S] centers in which all ligation is by sulfur of cysteine residues. Analysis of the polycrystalline ENDOR patterns has permitted us to determine for each nitrogen ligand the principal values of the hyperfine tensor and its orientation with respect to the g tensor, as well as the 14N quadrupole coupling tensor. The combination of these results with earlier M?ssbauer and resonance Raman studies supports a model for the reduced cluster with both histidyl ligands bound to the ferrous ion of the spin-coupled [Fe2+ (S = 2), Fe3+ (S = 5/2)] pair. The analyses of 15N hyperfine and 14N quadrupole coupling tensors indicate that the geometry of ligation at Fe2+ is approximately tetrahedral, with the (Fe)2(N)2 plane corresponding to the g1-g3 plane, and that the planes of the histidyl imidazoles lie near that plane, although they could not both lie in the plane. The bonding parameters of the coordinated nitrogens are fully consistent with those of an spn hybrid on a histidyl nitrogen coordinated to Fe. Differences in 14N ENDOR line width provide evidence for different mobilities of the two imidazoles when the protein is in fluid solution. We conclude that the structure deduced here for the PDO cluster is generally applicable to the full class of Rieske-type centers.  相似文献   

4.
The benefits of performing ENDOR experiments at higher microwave frequency are demonstrated in a Q-band (35 GHz) ENDOR investigation of a number of proteins with [nFe-mS] clusters, n = 2, 3, 4. Each protein displays several resonances in the frequency range of 0-20 MHz. In all instances, features are seen near v approximately 13 and 8 MHz that can be assigned, respectively, to "distant ENDOR" from 13C in natural-abundance (1.1%) and from 14N (the delta m1 = +/- 2 transitions); the nuclei involved in this phenomenon are remote from and have negligible hyperfine couplings to the cluster. In addition, a number of proteins show local 13C ENDOR signals with resolved hyperfine interactions; these are assigned to the beta carbons of cysteines bound to the cluster [A(13C) approximately 1.0 MHz]. Five proteins show resolved, local delta m1 = +/- 2 ENDOR signals from 14N with an isotropic hyperfine coupling, 0.4 less than or equal to A(14N) less than or equal to 1.0, similar to those seen in ESEEM studies; these most likely are associated with N-H...S hydrogen bonds to the cluster. Anabaena ferredoxin further shows a signal corresponding to A(14N) approximately 4 MHz. Quadrupole coupling constants are derived for both local and distant 14N signals. The interpretation of the data is supported by studies on 15N- and 13C-enriched ferredoxin (Fd) from Anabaena 7120, where the 15N signals can be clearly correlated with the corresponding 14N signals and where the 13C signals are strongly enhanced. Thus, the observation of 14N delta m1 = +/- 2 signals at Q-band provides a new technique for examining weak interactions with a cluster.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The bidirectional hydrogenase from Clostridium pasteurianum W5 is an iron-sulfur protein containing approximately 12 Fe atoms and 12 labile sulfides. We have studied oxidized samples of the enzyme with M?ssbauer and electron nuclear double resonance (ENDOR) spectroscopy to elucidate the nature of the center that gives rise to the EPR signal with principal g-values at 2.10, 2.04, and 2.01. The g = 2.10 center exhibits two well-resolved 57Fe ENDOR resonances. One is isotropic with A1 = 9.5 MHz; the other is nearly isotropic with A2 = 17 MHz. These magnetic hyperfine coupling constants are substantially (approximately 50%) smaller than those observed for [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. The M?ssbauer and ENDOR data, taken together, suggest that the g = 2.10 center contains at least two but not more than four iron atoms. Comparison of our data with recent results reported for Escherichia coli sulfite reductase and the ferricyanide-treated [4Fe-4S] cluster from Azotobacter vinelandii ferredoxin I suggests that the g = 2.10 center may possibly be formed, by oxidation, from a structure with a [4Fe-4S] core. The M?ssbauer spectra give evidence that at least 8 of the 12 Fe atoms of oxidized hydrogenase are organized in two ferredoxin-type [4Fe-4S] clusters, supporting conclusions derived previously from EPR studies of the reduced enzyme.  相似文献   

6.
57Fe, 33S, and 14N electron nuclear double resonance (ENDOR) studies have been performed to characterize the [4Fe-4S]+ cluster at the active site of aconitase. Q-band 57Fe ENDOLR of isotopically enriched enzyme, both substrate free and in the enzyme-substrate complex, reveals four inequivalent iron sites. In agreement with M?ssbauer studies [Kent et al. (1985) J. Biol. Chem. 260, 6371-6881], one of the iron ions, Fea, which is easily removed by oxidation to yield the [3Fe-4S]+ cluster of inactive aconitase, shows a dramatic change in the presence of substrate. The remaining iron sites, Feb1,2,3, show minor changes when substrate is bound. Methods devised by us for analyzing and simulating ENDOR spectra of a randomly oriented paramagnet have been used to determine the principal values and orientation relative to the g tensor for the hyperfine tensors of three of the four inequivalent iron sites of the [4Fe-4S]+ cluster, Fea, Feb2, and Feb3, in the substrate-free enzyme and the enzyme-substrate complex. The full tensor for the fourth site, Feb1, could not be obtained because its signal is seen only over a limited range of the EPR envelope. 33S ENDOR data for the enzyme-substrate complex using enzyme reconstituted with 33S show that the four inorganic bridging sulfide ions of the [4Fe-4S]+ cube have isotropic hyperfine couplings of A(S) less than 12 MHz, and analysis indicates that they can be divided into two pairs, one with couplings of A(S1) approximately less than 1 MHz and the other with A(S2) approximately 6-12 MHz; the analysis further places these pairs within the cube relative to the iron sites. 33S data for substrate-free enzyme is qualitatively similar and can be completely simulated by two types of S2- ion, with A(S1) approximately 7.5 and A(S2) approximately 9 MHz; the full hyperfine tensors have been determined. The hyperfine values for the two enzyme forms correspond to surprisingly small unpaired spin density on S2-. 14N ENDOR at Q-band reveals a nitrogen signal that does not change upon substrate binding.  相似文献   

7.
Uteroferrin, an acid phosphatase with a spin-coupled and redox-active binuclear iron center, is paramagnetic in its pink, enzymatically active, mixed-valence (S = 1/2) state. Phosphate, a product and inhibitor of the enzymatic activity of uteroferrin, converts the pink, EPR-active form of the protein to a purple, EPR-silent species. In contrast, molybdate, a tetrahedral oxyanion analog of phosphate, transforms the EPR spectrum of uteroferrin from a rhombic to an axial form. With both electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) spectroscopies, we observe a hyperfine interaction of [95Mo]molybdate with the S = 1/2, Fe(II)-Fe(III) center of the protein. A pair of 95Mo resonances centered at the 95Mo Larmor frequency at the applied magnetic field and separated by a hyperfine coupling constant of 1.2 MHz is evident. Therefore, a single monomeric species of molybdate is close to, and likely a ligand of, the binuclear cluster. 1H ENDOR studies on uteroferrin reveal at least six sets of lines mirrored about the 1H Larmor frequency. Two pairs of these lines become reduced in intensity when the protein is exchanged against D2O. Moreover, ESEEM and 2H ENDOR spectra display resonances at the 2H Larmor frequency. Therefore, the metal-binding region of the protein is accessible to solvent. Additional deuterium lines observable by ESEEM spectroscopy provide evidence for a population of strongly coupled, readily exchangeable protons associated with the binuclear center. The measured hyperfine coupling constants for these deuterons are orientation-dependent with splittings of nearly 4 MHz at g3 = 1.59 and less than 1 MHz at g1 = 1.94. In the presence of molybdate, ESEEM spectra of D2O-exchanged samples reveal a resonance at the 2H Larmor frequency, with no evidence of spectral components due to strongly coupled deuterons. 1H ENDOR studies of the uteroferrin-molybdate complex show at least seven pairs of lines, mirrored about the 1H Larmor frequency, of which one pair becomes attenuated in amplitude upon deuteration. The active site thus remains accessible to solvent in the presence of molybdate.  相似文献   

8.
Hydrogenase II contains two iron-sulfur clusters, one of the [4Fe-4S] type and one of unknown structure with unusual spectral properties (H-cluster). Using M?ssbauer spectroscopy we have studied the H-cluster under a variety of conditions. In the reduced state the cluster exhibits, in zero magnetic field, spectra with the typical 2:1 quadrupole pattern of reduced [3Fe-4S] clusters. However, whereas the latter are paramagnetic (S = 2) the H-cluster is diamagnetic (S = 0). Upon oxidation and exposure to CO the H-cluster exhibits an S = 1/2 EPR spectrum with g values at 2.03, 2.02, and 2.00. In this state, the M?ssbauer spectra reveal two cluster subsites with magnetic hyperfine coupling constants AI = +26.5 MHz and AII = -30 MHz. ENDOR data obtained by Hoffman and co-workers (Telser, J., Benecky, M. J., Adams, M. W. W., Mortenson, L. E., and Hoffman, B. M. (1986) J. Biol. Chem. 261, 13536-13541) show a 57Fe resonance at AIII approximately equal to 9.5 MHz. Analysis of the M?ssbauer spectra shows that this resonance represents one iron site. Our studies of the reduced and CO-bound oxidized states of hydrogenase II suggest that the H-cluster contains three iron atoms. The data obtained for the oxidized H-cluster suggest a novel type of 3-Fe cluster and bear little resemblance to those reported for oxidized [3Fe-4S] clusters with g = 2.01 EPR signals. In the reduced sample the [4Fe-4S]1+ cluster appears to occur in a mixture of two distinct electronic states.  相似文献   

9.
A histidine auxotroph of Saccharomyces cerevisiae has been used to metabolically incorporate [1,3-15N2] histidine into yeast cytochrome c oxidase. Electron nuclear double resonance (ENDOR) spectroscopy of cytochrome a in the [15N]histidine-substituted enzyme reveals an ENDOR signal which can be assigned to hyperfine coupling of a histidine 15N with the low-spin heme, thereby unambiguously identifying histidine as an axial ligand to this cytochrome. Comparison of this result with similar ENDOR data obtained on two 15N-substituted bisimidazole model compounds, metmyoglobin-[15N]imidazole and bis[15N]imidazole tetraphenyl porphyrin, provides strong evidence for bisimidazole coordination in cytochrome a.  相似文献   

10.
The biosynthesis of the organometallic H cluster of [Fe–Fe] hydrogenase requires three accessory proteins, two of which (HydE and HydG) belong to the radical S-adenosylmethionine enzyme superfamily. The third, HydF, is an Fe–S protein with GTPase activity. The [4Fe–4S] cluster of HydF is bound to the polypeptide chain through only the three, conserved, cysteine residues present in the binding sequence motif CysXHisX(46-53)HisCysXXCys. However, the involvement of the two highly conserved histidines as a fourth ligand for the cluster coordination is controversial. In this study, we set out to characterize further the [4Fe–4S] cluster of HydF using Mössbauer, EPR, hyperfine sublevel correlation (HYSCORE), and resonance Raman spectroscopy in order to investigate the influence of nitrogen ligands on the spectroscopic properties of [4Fe–4S]2+/+ clusters. Our results show that Mössbauer, resonance Raman, and EPR spectroscopy are not able to readily discriminate between the imidazole-coordinated [4Fe–4S] cluster and the non-imidazole-bound [4Fe–4S] cluster with an exchangeable fourth ligand that is present in wild-type HydF. HYSCORE spectroscopy, on the other hand, detects the presence of an imidazole/histidine ligand on the cluster on the basis of the appearance of a specific spectral pattern in the strongly coupled region, with a coupling constant of approximately 6 MHz. We also discovered that a His-tagged version of HydF, with a hexahistidine tag at the N-terminus, has a [4Fe–4S] cluster coordinated by one histidine from the tag. This observation strongly indicates that care has to be taken in the analysis of data obtained on tagged forms of metalloproteins.  相似文献   

11.
Two different hydrogenases have been isolated from Clostridium pasteurianum W5. Hydrogenase II (uptake) is active in H2 oxidation while hydrogenase I (bidirectional) is active both in H2 oxidation and evolution. Previous EPR and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I have now been complemented by analogous studies on oxidized 57Fe-enriched hydrogenase II and its CO derivative (using 12CO and 13CO). Binding of CO greatly changes the EPR spectrum of oxidized hydrogenase II, and use of 13CO leads to resolved hyperfine splitting from interaction with a single 13CO molecule (AC approximately 34 MHz). This coupling is over 50% larger than that seen for hydrogenase I. 57Fe ENDOR disclosed two types of iron site in both oxidized hydrogenase II and its CO derivative. Combination of EPR, ENDOR, and M?ssbauer results shows that site 1 has AFe1 = 18 MHz shifting to approximately 30 MHz upon CO binding and consisting of two Fe atoms and site 2 has A2 approximately 7 MHz shifting to approximately 10 MHz and containing a single Fe. These results are very similar to those seen for hydrogenase I, which indicates that a structurally similar 3Fe cluster, believed to be the catalytically active site, is present in both. Proton ENDOR shows a solvent exchangeable resonance only in the CO derivative of hydrogenase II. This indicates a structural difference between hydrogenases I and II that is brought out by CO binding. No evidence of 14N coordination to the cluster is seen for either enzyme.  相似文献   

12.
We have employed EPR and a set of recently developed electron nuclear double resonance (ENDOR) spectroscopies to characterize a suite of [2Fe?C2S] ferredoxin clusters from Aquifex aeolicus (Aae Fd1, Fd4, and Fd5). Antiferromagnetic coupling between the FeII, S?=?2, and FeIII, S?=?5/2, sites of the [2Fe?C2S]+ cluster in these proteins creates an S?=?1/2 ground state. A complete discussion of the spin-Hamiltonian contributions to g includes new symmetry arguments along with references to related FeS model compounds and their symmetry and EPR properties. Complete 57Fe hyperfine coupling (hfc) tensors for each iron, with respective orientations relative to g, have been determined by the use of ??stochastic?? continuous wave and/or ??random hopped?? pulsed ENDOR, with the relative utility of the two approaches being emphasized. The reported hyperfine tensors include absolute signs determined by a modified pulsed ENDOR saturation and recovery (PESTRE) technique, RD-PESTRE??a post-processing protocol of the ??raw data?? that comprises an ENDOR spectrum. The 57Fe hyperfine tensor components found by ENDOR are nicely consistent with those previously found by M?ssbauer spectroscopy, while accurate tensor orientations are unique to the ENDOR approach. These measurements demonstrate the capabilities of the newly developed methods. The high-precision hfc tensors serve as a benchmark for this class of FeS proteins, while the variation in the 57Fe hfc tensors as a function of symmetry in these small FeS clusters provides a reference for higher-nuclearity FeS clusters, such as those found in nitrogenase.  相似文献   

13.
Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.  相似文献   

14.
The putative [6Fe-6S] prismane cluster in the 6-Fe/S-containing protein from Desulfovibrio vulgaris, strain Hildenborough, has been enriched to 80% in 57Fe, and has been characterized in detail by S-, X-, P- and Q-band EPR spectroscopy, parallel-mode EPR spectroscopy and high-resolution 57Fe M?ssbauer spectroscopy. In EPR-monitored redox-equilibrium titrations, the cluster is found to be capable of three one-electron transitions with midpoint potentials at pH 7.5 of +285, +5 and -165 mV. As the fully reduced protein is assumed to carry the [6Fe-6S]3+ cluster, by spectroscopic analogy to prismane model compounds, four valency states are identified in the titration experiments: [6Fe-6S]3+, [6Fe-6S]4+, [6Fe-6S]5+, [6Fe-6S]6+. The fully oxidized 6+ state appears to be diamagnetic at low temperature. The prismane protein is aerobically isolated predominantly in the one-electron-reduced 5+ state. In this intermediate state, the cluster exists in two magnetic forms: 10% is low-spin S = 1/2; the remainder has an unusually high spin S = 9/2. The S = 1/2 EPR spectrum is significantly broadened by ligand (2.3 mT) and 57Fe (3.0 mT) hyperfine interaction, consistent with a delocalization of the unpaired electron over 6Fe and indicative of at least some nitrogen ligation. At 35 GHz, the g tensor is determined as 1.971, 1.951 and 1.898. EPR signals from the S = 9/2 multiplet have their maximal amplitude at a temperature of 12 K due to the axial zero-field splitting being negative, D approximately -0.86 cm-1. Effective g = 15.3, 5.75, 5.65 and 5.23 are observed, consistent with a rhombicity of [E/D] = 0.061. A second component has g = 9.7, 8.1 and 6.65 and [E/D] = 0.108. When the protein is reduced to the 4+ intermediate state, the cluster is silent in normal-mode EPR. An asymmetric feature with effective g approximately 16 is observed in parallel-mode EPR from an integer spin system with, presumably, S = 4. The fully reduced 3+ state consists of a mixture of two S = 1/2 ground state. The g tensor of the major component is 2.010, 1.825 and 1.32; the minor component has g = 1.941 and 1.79, with the third value undetermined. The sharp line at g = 2.010 exhibits significant convoluted hyperfine broadening from ligands (2.1 mT) and from 57Fe (4.6 mT). Zero-field high-temperature M?ssbauer spectra of the protein, isolated in the 5+ state, quantitatively account for the 0.8 fractional enrichment in 57Fe, as determined with inductively coupled plasma mass spectrometry.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Plant nitrite reductase (NiR) catalyzes the reduction of nitrite (NO(2)(-)) to ammonia, using reduced ferredoxin as the electron donor. NiR contains a [4Fe-4S] cluster and an Fe-siroheme, which is the nitrite binding site. In the enzyme's as-isolated form ([4Fe-4S](2+)/Fe(3+)), resonance Raman spectroscopy indicated that the siroheme is in the high-spin ferric hexacoordinated state with a weak sixth axial ligand. Kinetic and spectroscopic experiments showed that the reaction of NiR with NO(2)(-) results in an unexpectedly EPR-silent complex formed in a single step with a rate constant of 0.45 +/- 0.01 s(-)(1). This binding rate is slow compared to that expected from the NiR turnover rates reported in the literature, suggesting that binding of NO(2)(-) to the as-isolated form of NiR is not the predominant type of substrate binding during enzyme turnover. Resonance Raman spectroscopic characterization of this complex indicated that (i) the siroheme iron is low-spin hexacoordinated ferric, (ii) the ligand coordination is unusually heterogeneous, and (iii) the ligand is not nitric oxide, most likely NO(2)(-). The reaction of oxidized NiR with hydroxylamine (NH(2)OH), a putative intermediate, results in a ferrous siroheme-NO complex that is spectroscopically identical to the one observed during NiR turnover. Resonance Raman and absorption spectroscopy data show that the reaction of oxidized NiR ([4Fe-4S](2+)/Fe(3+)) with hydroxylamine is binding-limited, while the NH(2)OH conversion to nitric oxide is much faster.  相似文献   

16.
Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]3+ cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX31-39CCX35-36CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (gzyx = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. 57Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with 57Fe hyperfine couplings very similar to that of CoM-HDR. CoM-33SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S3(O/N)1 geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn site.  相似文献   

17.
Pyrococcus furiosus ferredoxin contains a single [4Fe-4S] that exists in both S = 1/2 (20%) and S = 3/2 (80%) ground states in the reduced protein. We report here on the temperature-dependent potentiometric properties of the two spin forms, their stability, and on the structural features that differentiate them. The midpoint potential (Em) of the cluster in either spin state was determined at -365 mV (30 degrees C, pH 8.0). By rapidly freezing samples for EPR analyses, it was shown that the Em values of both spin states appear to change by -1.7 mV/degrees C over the range 20 degrees-80 degrees C, and by -6 mV/degrees C between 80 and 89 degrees C. The Em values and the relative amounts of the S = 1/2 and S = 3/2 forms of the cluster were unaffected by pH (6.8-10.5), even at 85 degrees C, and were unchanged by the presence of NaCl (1.0 M), sodium dodecyl sulfate (10%, w/v) or ethylene glycol (50%, v/v), even at 80 degrees C. The S = 1/2 form of the [4Fe-4S]+ cluster was found to exhibit a strongly coupled 1H ENDOR resonance (A = 22 MHz) that was exchangeable with the solvent. Such a large coupling has not been observed in any other iron-sulfur protein. Since a unique feature of this 4Fe-ferredoxin is that only 3 cysteinyl residues appear to be coordinated to the [4Fe-4S] cluster, the ENDOR data are consistent with an H2O molecule being a ligand to the unique Fe site. The S = 3/2 form of the [4Fe-4S]+ cluster exhibited a similar, strongly coupled 1H ENDOR resonance, but in this spin state it was not exchangeable with the solvent. This suggests that the [4Fe-4S]+ cluster exhibiting the S = 3/2, but not the S = 1/2 ground state, is "shielded" from the solvent, presumably by neighboring amino acid residues. In view of the pH dependence of the midpoint potential of the two spin states, the fourth ligand to the cluster and the source of the strongly coupled 1H ENDOR resonance is probably an OH- rather than H2O molecule.  相似文献   

18.
Rieske-type iron/sulfur proteins and several NADH-dependent oxygenases contain Fe/S clusters with similar spectral and magnetic properties. Purified Rieske iron/sulfur protein from Thermus thermophilus contains two apparently identical [2Fe-2S] clusters in a polypeptide having only four cysteine residues, and it has been proposed that each Fe/S cluster is coordinated to two cysteine S-atoms and to an unknown number of other non-sulfur atoms (Fee, J. A., Findling, K. L., Yoshida, T., Hille, R., Tarr, G. E., Hearshen, D. O., Dunham, W. R., Day, E. P., Kent, T. A., and Munck, E. (1984) J. Biol. Chem. 259, 124-133). We have examined the Rieske protein from Thermus and the phthalate dioxygenase from Pseudomonas cepacia with electron nuclear double resonance (ENDOR) and pulsed EPR methods and report here evidence for the direct coordination of nitrogenous ligands to the Fe/S clusters in these proteins. The electron nuclear double resonance signals arising from 14N have been interpreted in terms of a strongly coupled ligand with AN = approximately 26-28 MHz and a weakly coupled ligand with AN = approximately 9 MHz. The pulsed EPR spectrum shows a rich pattern of lines in the Fourier transformed data having peaks in the range of 0.8 to 6.7 MHz. The lower frequency resonances are tentatively associated with coupling of the unpaired spin to the remote N-atoms of coordinated imidazole rings.  相似文献   

19.
Electron spin echo envelope modulation (ESEEM) spectroscopy was used to study the electron-nuclear coupling in two oxygenated cobalt-substituted hemoproteins, myoglobin (oxyCoMb) and a monomeric hemoglobin from Glycera dibranchiata (oxyCoHbgly). The modulation frequency components in ESEEM spectra of both proteins arose from the coupling to the N epsilon of the proximal histidyl imidazole. The hyperfine and quadrupole coupling parameters for these two nitrogens, calculated by computer spectral simulation, are Aiso = 2.46 MHz, e2qQ = 2.15 MHz, and eta = 0.4 for oxyCoMb and Aiso = 3.70 MHz, e2qQ = 2.70 MHz, and eta = 0.5 for oxyCoHbgly. A hyperfine coupling of 0.6 MHz, found for oxyCoMb in D2O but not for oxyCoHbgly in D2O, was assigned to the coupling to a deuteron that is hydrogen-bonded to the O2 ligand in oxyCoMb. This hydrogen bonding is believed to be responsible for the reduction in hyperfine and nuclear quadrupole coupling to the proximal histidyl imidazole N epsilon in oxyCoMb. A molecular orbital model for O2 adducts of cobaltous compounds [Tovrog et al. (1976) J. Am. Chem. Soc. 98, 5144] was used to understand the hydrogen bond-induced reduction in 14N superhyperfine coupling in oxyCoMb.  相似文献   

20.
17O electron nuclear double resonance (ENDOR) studies at X-band (9-GHz) and Q-band (35-GHz) microwave frequencies reveal that the [4Fe-4S]+ cluster of substrate-free aconitase [citrate (isocitrate) hydro-lyase, EC 4.2.1.3] binds solvent, HxO (x = 1, 2). Previous 17O ENDOR studies [Telser et al. (1986) J. Biol. Chem. 261, 4840-4846] had disclosed that Hx17O binds to the enzyme-substrate complex and also to complexes of enzyme with the substrate analogues trans-aconitate and nitroisocitrate (1-hydroxy-2-nitro-1,3-propanedicarboxylate). We have used 1H and 2H ENDOR to characterize these solvent species. We propose that the fourth ligand of Fea in substrate-free enzyme is a hydroxyl ion from the solvent; upon binding of substrate or substrate analogues at this Fea site, the solvent species becomes protonated to form a water molecule. Previous 17O and 13C ENDOR studies [Kennedy et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8854-8858] showed that only a single carboxyl, at C-2 of the propane backbone of cis-aconitate or at C-1 of the inhibitor nitroisocitrate, coordinates to the cluster. Together, these results imply that enzyme-catalyzed interconversion of citrate and isocitrate does not involve displacement of an endogenous fourth ligand, but rather addition of the anionic carboxylate ligand and a change in protonation state of a solvent species bound to Fea. We further report the 17O hyperfine tensor parameters of the C-2 carboxyl oxygen of substrate bound to the cluster as determined by the field dependence of the 17O ENDOR signals. 17O ENDOR studies also show that the carboxyl group of the inhibitor trans-aconitate binds similarly to that of substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号