首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have studied cAMP-dependent phosphorylation of sodium channels in rat brain neurons maintained in primary culture. In back phosphorylation studies, cells were treated with drugs to increase intracellular cAMP and sodium channels were solubilized and isolated by immunoprecipitation. Surface and intracellular pools of sodium channels were isolated separately. Purified channels were then phosphorylated with [gamma-32P]ATP by the catalytic subunit of cAMP-dependent protein kinase to incorporate 32P into available cAMP-dependent phosphorylation sites. The amount of 32P incorporated in vitro is inversely proportional to the extent of endogenous phosphorylation. Incubation of cells with forskolin (0.1-100 microM), 8-Br-cAMP (0.1-10 mM), or isobutylmethylxanthine (0.01-1.0 mM) inhibited subsequent incorporation of 32P into isolated sodium channels by 70-80%, indicating that treatment of cells with these drugs had increased endogenous phosphorylation to nearly maximum levels. The phosphopeptides phosphorylated in vivo and in vitro were identical. To examine the magnitude of basal phosphorylation and the extent of stimulated phosphorylation, the amount of 32P incorporated into sodium channels from control and stimulated cells was compared to that from matched samples which had been dephosphorylated with calcineurin. Sodium channels from control cells incorporated approximately 2-fold more 32P after dephosphorylation, indicating that cAMP-dependent sites on the channel are at least 47% phosphorylated in the basal state. Sodium channels from forskolin-treated cells incorporated 7-8-fold more 32P after dephosphorylation, indicating that cAMP-dependent phosphorylation sites are 80-90% phosphorylated after stimulation. Cell surface and intracellular pools of sodium channels were phosphorylated similarly. In cells metabolically labeled with 32P, cell surface sodium channels incorporated 2.7 mol of phosphate/mol of channel. Forskolin stimulated 32P incorporation into sodium channels 1.3-fold, consistent with the results obtained by back phosphorylation. We conclude that the rat brain sodium channel is substantially phosphorylated in both the cell surface and intracellular pools in vivo in unstimulated rat brain neurons, and the extent of phosphorylation is increased to 80-90% of maximum phosphorylation by agents that elevate intracellular cAMP.  相似文献   

2.
We have examined the effects of cAMP elevating agents on the phosphorylation of dihydropyridine-sensitive Ca2+ channels in intact newborn chick skeletal muscle. In situ treatment with the beta-adrenergic receptor agonist isoproterenol resulted in the phosphorylation of the 170-kDa alpha 1 subunit in the intact cells, as evidenced by a marked decrease in the ability of the alpha 1 peptide to serve as a substrate in in vitro back phosphorylation reactions with [gamma-32P]ATP and the purified catalytic subunit of cAMP-dependent protein kinase. The phosphorylation of the 52-kDa beta subunit was not affected. The effects of isoproterenol were time- and concentration-dependent and were mimicked by other cAMP elevating agents but not by the Ca2+ ionophore A23187 or a protein kinase C activator. To test for functional effects of the observed phosphorylation, purified channels were reconstituted into liposomes containing entrapped fluo-3, and depolarization-sensitive and dihydropyridine-sensitive Ca2+ influx was measured. Channels from isoproterenol-treated muscle exhibited an increased rate and extent of Ca2+ influx compared to control preparations. The effects of isoproterenol pretreatment could be mimicked by phosphorylating the channels with cAMP-dependent protein kinase in vitro. These results demonstrate that the alpha 1 subunit of the dihydropyridine-sensitive Ca2(+)-channels is the primary target of cAMP-dependent phosphorylation in intact muscle and that the phosphorylation of this protein leads to activation of channel activity.  相似文献   

3.
Mouse BC3H1 myocytes were incubated with 32Pi before acetylcholine receptors were solubilized, immunoprecipitated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. More than 90% of the 32P found in the receptor was bound to the delta subunit. Two phosphorylation sites in this subunit were resolved by reverse phase high performance liquid chromatography after exhaustive proteolysis of the protein with trypsin. Sites 1 and 2 were phosphorylated to approximately the same level in control cells. The divalent cation ionophore, A23187, increased 32P in site 1 by 40%, but did not affect the 32P content of site 2. In contrast, isoproterenol increased 32P in site 2 by more than 60%, while increasing 32P in site 1 by only 20%. When dephosphorylated receptor was incubated with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase, the delta subunit was phosphorylated to a maximal level of 1.6 phosphates/subunit. Approximately half of the phosphate went into site 2, with the remainder going into a site not phosphorylated in cells. The alpha subunit was phosphorylated more slowly, but phosphorylation of both alpha and delta subunits was blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. Phosphorylation of the receptor was also observed with preparations of phosphorylase kinase. In this case phosphorylation occurred in the beta subunit and site 1 of the delta subunit, neither of which were phosphorylated by cAMP-dependent protein kinase. The rate of receptor phosphorylation by phosphorylase kinase was slow relative to that catalyzed by cAMP-dependent protein kinase. Therefore, it can not yet be concluded that phosphorylase kinase phosphorylates the beta subunit and the delta subunit site 1 in cells. However, the results strongly support the hypothesis that phosphorylation by cAMP-dependent protein kinase accounts for phosphorylation of the alpha subunit and the delta subunit site 2 in response to elevations in cAMP.  相似文献   

4.
Antibodies that recognize the alpha 2 delta and alpha 1 subunits of skeletal muscle L-type calcium channels have been used to investigate the subunit components and phosphorylation of omega-conotoxin (omega-CgTx)-sensitive N-type calcium channels from rabbit brain. Photolabeling of the N-type channel with a photoreactive derivative of 125I-omega-CgTx results in the identification of a single polypeptide of 240 kDa. MANC-1, a monoclonal antibody recognizing alpha 2 delta subunits of L-type calcium channels from skeletal muscle, immunoprecipitates the omega-CgTx-labeled 240-kDa polypeptide and approximately 6% of the digitonin-solubilized 125I-omega-CgTx-labeled N-type channels. MANC-1 also immunoprecipitates a phosphoprotein of 240 kDa that comigrates with 125I-omega-CgTx-labeled N-type calcium channels, but not with L-type calcium channels, in sucrose gradients. Both cAMP-dependent protein kinase and protein kinase C are effective in the phosphorylation of this polypeptide. Similar to the alpha 1 subunits of skeletal muscle L-type calcium channels, the immunoprecipitation of the 240-kDa phosphoprotein by MANC-1 is prevented by the detergent Triton X-100. Anti-CP-(1382-1400), an antipeptide antibody against a highly conserved segment of the alpha 1 subunits of calcium channels, immunoprecipitates the 240-kDa phosphopeptide in Triton X-100. The 240-kDa protein is phosphorylated to a stoichiometry of approximately 1 mol of phosphate/mol of omega-CgTx-binding N-type calcium channels by both cAMP-dependent protein kinase and protein kinase C. Our results show that the 240-kDa polypeptide is an alpha 1-like subunit of an omega-CgTx-sensitive N-type calcium channel. The N-type calcium channels containing this subunit are phosphorylated by cAMP-dependent protein kinase and protein kinase C and contain noncovalently associated alpha 1-like and alpha 2 delta-like subunits as part of their oligomeric structure.  相似文献   

5.
Catecholamines are known to influence the contractility of cardiac and skeletal muscles, presumably via cAMP-dependent phosphorylation of specific proteins. We have investigated the in vitro phosphorylation of myofibrillar proteins by the catalytic subunit of cAMP-dependent protein kinase of fast- and slow-twitch skeletal muscles and cardiac muscle with a view to gaining a better understanding of the biochemical basis of catecholamine effects on striated muscles. Incubation of canine red skeletal myofibrils with the isolated catalytic subunit of cAMP-dependent protein kinase and Mg-[gamma-32P]ATP led to the rapid incorporation of [32P]phosphate into five major protein substrates of subunit molecular weights (MWs) 143,000, 60,000, 42,000, 33,000, and 11,000. The 143,000 MW substrate was identified as C-protein; the 42,000 MW substrate is probably actin; the 33,000 MW substrate was shown not to be a subunit of tropomyosin and, like the 60,000 and 11,000 MW substrates, is an unidentified myofibrillar protein. Isolated canine red skeletal muscle C-protein as phosphorylated to the extent of approximately 0.5 mol Pi/mol C-protein. Rabbit white skeletal muscle and bovine cardiac muscle C-proteins were also phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, both in myofibrils and in the isolated state. Cardiac C-protein was phosphorylated to the extent of 5-6 mol Pi/mol C-protein, whereas rabbit white skeletal muscle C-protein was phosphorylated at the level of approximately 0.5 mol Pi/mol C-protein. As demonstrated earlier by others, C-protein of skeletal and cardiac muscles inhibited the actin-activated myosin Mg2+-ATPase activity at low ionic strength in a system reconstituted from the purified skeletal muscle contractile proteins (actin and myosin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cyclic AMP-dependent protein kinase catalyzes the incorporation of 3-4 mol of phosphate into the alpha subunit of rat brain sodium channels in vitro or in situ. Digestion of phosphorylated sodium channels with CNBr yielded three major phosphorylated fragments of 25, 31, and 33 kDa. These fragments were specifically immunoprecipitated with site-directed antisera establishing their location within an intracellular loop between the first and second homologous domains containing residues 448 to 630 of sodium channel RI or residues 450-639 of sodium channel RII. Five of the seven major tryptic phosphopeptides generated from intact sodium channel alpha subunits were contained in each of the 25-, 31-, and 33-kDa CNBr fragments, indicating that most cAMP-dependent phosphorylation sites are in this domain. Since CNBr digestion of sodium channels which had been metabolically labeled with 32P in intact neurons yielded the same phosphorylated fragments, the phosphorylated region we have identified is the major location of phosphorylation in situ. Only serine residues were phosphorylated by cAMP-dependent protein kinase in vitro, while approximately 16% of the phosphorylation in intact neurons was on threonine residues that must lie outside the domain we have identified. Since this domain is phosphorylated in intact neurons, our results show that it is located on the intracellular side of the plasma membrane. These results are considered with respect to models for the transmembrane orientation of the alpha subunit.  相似文献   

7.
Cyclic AMP-dependent phosphorylation of the rat brain sodium channel was reported to be restricted to five sites within an approximately 210 amino acid region of the primary sequence that is deleted in the homologous sodium channel from rat skeletal muscle. We find that, in spite of this deletion, the rat muscle sodium channel alpha-subunit is also an excellent substrate for phosphorylation by this kinase both in primary muscle cells in tissue culture and in vitro after isolation from adult muscle. Sodium channel protein purified from adult rat skeletal muscle was readily phosphorylated in vitro by the catalytic subunit of the bovine cyclic AMP-dependent protein kinase (PKa). Only the 260,000 MW alpha-subunit was labeled, with a maximum level of incorporation in vitro of approximately 0.5 mol [32P]phosphate per mole of channel protein. The beta-subunit of the channel is not phosphorylated under these conditions. In primary rat skeletal muscle cells in culture, incorporation of phosphate into the channel alpha-subunit is stimulated 1.3- to 1.5-fold by treatment of the cells with forskolin. Phosphorylation of the sodium channel isolated from these cells could also be demonstrated in vitro using PKa. This in vitro phosphorylation could be inhibited 80-90% by pretreatment of the cells in culture with forskolin, suggesting that the sites labeled in vitro by PKa were the same as those phosphorylated in the intact cells by the endogenous cyclic AMP-dependent kinase. In both the adult muscle channel and the channel from muscle cells in culture, phosphorylation by PKa was limited to serine residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The alpha subunit of the rat brain sodium channel is phosphorylated by cAMP-dependent protein kinase in vitro and in situ at multiple sites which yield seven tryptic phosphopeptides. Phosphopeptides 1-4 and 7 are derived from phosphorylation sites between residues 554 and 623 in a single large CNBr fragment from the cytoplasmic segment connecting homologous domains I and II of the alpha subunit (Rossie, S., Gordon, D., and Catterall, W. A. (1987) J. Biol. Chem. 262, 17530-17535). In the present work, antibodies were prepared against a synthetic peptide corresponding to residues 676-692 (AbSP15), which contain one additional potential phosphorylation site at Ser686-Ser687 in a different predicted CNBr fragment of this same intracellular segment. AbSP15 recognizes native and denatured sodium channels specifically and immunoprecipitates phosphorylated CNBr fragments of low molecular mass that contain a new site phosphorylated by cAMP-dependent protein kinase. Comparison of tryptic phosphopeptides derived from intact alpha subunits with those derived from the phosphorylated CNBr fragments isolated by immunoprecipitation with AbSP15 indicates that the two previously unidentified phosphopeptides 5 and 6 derived from the intact alpha subunit arise from phosphorylation of the site containing Ser686-Ser687. These results identify a new cAMP-dependent phosphorylation site and show that the major cAMP-dependent phosphorylation sites of the rat brain sodium channel, which are phosphorylated both in vitro and in intact neurons, are all located in a cluster between residues 554 and 687 in the intracellular segment between domains I and II.  相似文献   

9.
Arginine vasopressin (antidiuretic hormone, ADH) stimulation of sodium transport in high electrical resistance epithelia is accompanied by adenylate cyclase stimulation and cAMP accumulation. The hypothesis of direct phosphorylation of the purified amiloride-blockable epithelial Na+ channel protein by cAMP-dependent protein kinase A after ADH treatment of cultured cells was investigated in this study. Phosphate-depleted A6 cells (a cell line derived from toad kidney) were exposed to 32PO4(3-) in the absence or presence of basolateral ADH (100 milliunits/ml). After 20 min (the time needed for ADH to increase maximally Na+ transport), the Na+ channels were extracted from the cells and purified. At every stage of purification, only one subunit of the Na+ channel, namely, the 315-kDa subunit, was specifically phosphorylated as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography or scintillation counting. In addition, a polyclonal antibody raised against purified epithelial Na+ channel protein was able to immunoprecipitate the phosphorylated channel protein from a detergent-solubilized fraction of vasopressin-treated A6 cells. This same subunit was also specifically phosphorylated in vitro when the purified Na+ channel protein was incubated with gamma-[32P]ATP and the purified catalytic subunit of the cAMP-dependent protein kinase. Thus, only a single component, the 315-kDa subunit, of the Na+ channel protein complex (which is composed of six subunits) can be phosphorylated both in vivo and in vitro. This subunit is selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 2-3 mol of 32P/mol of protein.  相似文献   

10.
Studies have suggested that the expression, translocation, and function of alpha4beta2 nicotinic receptors may be modulated by alpha4 subunit phosphorylation, but little direct evidence exists to support this idea. The objective of these experiments was to identify specific serine/threonine residues on alpha4 subunits that are phosphorylated in vivo by cAMP-dependent protein kinase and protein kinase C (PKC). To accomplish this, DNAs coding for human alpha4 subunits containing alanines in place of serines/threonines predicted to represent phosphorylation sites were constructed, and transiently transfected with the DNA coding for wild-type beta2 subunits into SH-EP1 cells. Cells were pre-incubated with (32)Pi and incubated in the absence or presence of forskolin or phorbol 12,13-dibutyrate. Immunoprecipitated alpha4 subunits were subjected to immunoblot, autoradiographic and phosphoamino acid analyses, and two-dimensional phosphopeptide mapping. Results confirmed the presence of two alpha4 protein bands, a major band of 71/75 kDa and a minor band of 80/85 kDa. Phosphoamino acid analysis of the major band indicated that only serine residues were phosphorylated. Phosphopeptide maps demonstrated that Ser362 and 467 on the M3/M4 cytoplasmic domain of the alpha4 subunit represent major cAMP-dependent protein kinase phosphorylation sites, while Ser550 also contained within this major intracellular loop is a major site for protein kinase C phosphorylation.  相似文献   

11.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

12.
Phosphorylase kinase purified from rabbit skeletal muscle was ADP-ribosylated by hen liver nuclear ADP-ribosyltransferase. This modification, as was seen in cAMP-dependent phosphorylation, was observed only in alpha and beta subunits of the phosphorylase kinase and the latter was more rapidly modified. Analysis of the ADP-ribosylated amino acid residue sequenced in alpha and beta subunits showed that both subunits were modified at the area of the arginine residue. The Km for NAD was 0.10 mM and the pH optimum was 9.0. When the ADP-ribosylated phosphorylase kinase was phosphorylated by cAMP-dependent protein kinase, a reduction in phosphate incorporation occurred with increase in the ADP-ribosylation. ADP-ribosylation also suppressed autophosphorylation, to a lesser degree than observed with cAMP-dependent phosphorylation. The ADP-ribosylation-dependent reduction of phosphorylation resulted in a suppression of the phosphorylation-dependent activation of the phosphorylase kinase. These results together with findings of ADP-ribosyltransferase activity in the rabbit skeletal muscle [Soman, G. et al. (1984) Biochem. Biophys. Res. Commun. 120, 973-980] suggest that ADP-ribosylation participates in the regulation of the phosphorylase kinase activity through changes in the rate of phosphorylation.  相似文献   

13.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

14.
A combination of in vivo and in vitro approaches were used to characterize phosphorylation sites on the 70,000-kilodalton (kDa) subunit of neurofilaments (NF-L) and to identify the protein kinases that are likely to mediate these modifications in vivo. Neurofilament proteins in a single class of neurons, the retinal ganglion cells, were pulse-labeled in vivo by injecting mice intravitreously with [32P]orthophosphate. Radiolabeled neurofilaments were isolated after they had advanced along optic axons, and the individual subunits were separated on sodium dodecyl sulfate-polyacrylamide gels. Two-dimensional alpha-chymotryptic phosphopeptide map analysis of NF-L revealed three phosphorylation sites: an intensely labeled peptide (L-1) and two less intensely labeled peptides (L-2 and L-3). The alpha-chymotryptic peptide L-1 was identified as the 11-kDa segment containing the C terminus of NF-L. The ability of these peptides to serve as substrates for specific protein kinases were examined by incubating neurofilament preparations with [gamma-32P]ATP in the presence of purified cAMP-dependent protein kinase or appropriate activators and/or inhibitors of endogenous cytoskeleton-associated protein kinases. The heparin-sensitive, calcium- and cyclic nucleotide-independent kinase associated with the cytoskeleton selectively phosphorylated L-1 and L-3 but had little, if any, activity toward L-2. When this kinase was inhibited with heparin, cAMP addition to the neurofilament preparation stimulated the phosphorylation of L-2, and addition of the purified catalytic subunit of cAMP-dependent protein kinase induced intense labeling of L-2. At higher labeling efficiencies, the exogenous kinase also phosphorylated L-3 and several sites at which labeling was not detected in vivo; however, L-1 was not a substrate. Calcium and calmodulin added to neurofilament preparations in the presence of heparin modestly stimulated the phosphorylation of L-1 and L-3, but not L-2, and the stimulation was reversed by trifluoperazine. The selective phosphorylation of different polypeptide domains on NF-L by second messenger-dependent and -independent kinases suggests multiple functions for phosphate groups on this protein.  相似文献   

15.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

16.
The primary (alpha 1) subunit of purified skeletal muscle dihydropyridine-sensitive calcium channels is present in full-length (212 kDa) and truncated (190 kDa) forms which are both phosphorylated by cAMP-dependent protein kinase (cA-PK) in vitro. In the present study, phosphorylation of the purified calcium channel by cA-PK followed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional phosphopeptide mapping revealed differential phosphorylation of the related 190- and 212-kDa forms. The 190-kDa form of the alpha 1 subunit was phosphorylated on three major and three minor tryptic phosphopeptides; the 212-kDa form was phosphorylated on all six of these phosphopeptides plus two that were unique. Time course experiments showed that a single site on the COOH-terminal portion of the full-length form of the alpha 1 subunit is most intensely and rapidly (within 10 s) phosphorylated. Phosphorylation occurs almost exclusively on this COOH-terminal site unless harsh conditions such as treatment with denaturing detergents are employed to expose phosphorylation sites within the 190-kDa segment of the molecule. Elution of phosphopeptides from the second dimension chromatograph followed by immunoprecipitation with an anti-peptide antibody (anti-CP1) directed against the COOH-terminal amino acid sequence enabled us to identify this major phosphorylation site as serine 1854. The nearby consensus sites for cA-PK phosphorylation at serines 1757 and 1772 were phosphorylated only after denaturation or proteolytic cleavage. Phosphorylation of serine 1854 may play a pivotal role in the regulation of calcium channel function by cA-PK.  相似文献   

17.
Treatment of PtK1 cells with 5 mM acrylamide for 4 hr induces reversible dephosphorylation of keratin in concert with reversible aggregation of intermediate filaments (Eckert and Yeagle, Cell Motil. Cytoskeleton 11:24-30, 1988). We have examined this phenomenon by 1) in vitro phosphorylation of isolated PtK1 keratin filaments and 2) combined treatments of PtK1 cells with both acrylamide and agents which elevate intracellular cAMP levels. PtK1 keratins were incubated in gamma-32P-ATP in the presence or absence of cAMP-dependent kinase (A-kinase) and cAMP. Levels of phosphorylation were analyzed by electrophoresis and autoradiography. Phosphorylation of keratin polypeptides (56 kD, 53 kD, 45 kD, 40 kD) occurred without added kinase, suggesting the presence of an endogenous kinase which remains with intermediate filaments in residues of Triton X-100 extracted cells. Phosphorylation levels were increased by A-kinase but not by cAMP alone, indicating the presence of cAMP-dependent phosphorylation sites in addition to sites phosphorylated by the endogenous kinase. To study the possible role of cAMP-dependent phosphorylation in acrylamide-induced aggregation of keratin filaments, we treated cells with acrylamide in the presence of 8-bromo-cAMP (brcAMP), pertussis toxin (PT), isobutylmethylxanthine (IBMX), or forskolin, which increase intracellular cAMP levels. The distribution and phosphorylation levels of keratin filaments, as well as intracellular cAMP levels, were determined for each of these treatments. In addition to aggregation and dephosphorylation of keratin filaments reported previously, treatment of cells with acrylamide alone also results in reduced levels of intracellular cAMP. 8-bromo-cAMP, IBMX, and forskolin prevent acrylamide-induced aggregation of keratin filaments and result in both normal levels of keratin phosphorylation and normal intracellular cAMP levels. PT was apparently ineffective. These observations suggest that 1) PtK1 keratins are phosphorylated by cAMP-dependent kinase and an endogenous, cAMP-independent kinase and 2) alteration of levels of cAMP-dependent phosphorylation may be involved in aggregation of keratin filaments in response to acrylamide.  相似文献   

18.
Both the triple-helical and denatured forms of nonfibrillar bovine dermal type I collagen were tested as substrates for the catalytic subunit of cAMP-dependent protein kinase in an in vitro reaction. Native, triple-helical collagen was not phosphorylated, but collagen that had been thermally denatured into individual alpha chains was a substrate for the protein kinase. Catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured collagen to between 3 to 4 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Pepsin-solubilized and intact collagens were phosphorylated similarly, as long as each was in a nonhelical conformation. The first 2 mol of phosphate incorporated into type I collagen by the protein kinase were present in the alpha 2(I) chain. The alpha 1(I) chain was only phosphorylated during long incubations in which the stoichiometry exceeded 2 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Phosphoserine was the only phosphoamino acid identified in collagen that had been phosphorylated to any degree by the protein kinase. The 2 mol of phosphate incorporated into the alpha 2(I) chain were localized to the alpha 2(I)CB4 cyanogen bromide fragment. The catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured pepsin-solubilized collagen with a Km of 8 microM and a Vmax of approximately 0.1 mumol/min/mg of enzyme. Denatured, but not triple-helical, type I collagen was also phosphorylated by cGMP-dependent protein kinase, although it was a poorer substrate for this enzyme than for the cAMP-dependent protein kinase. Collagen was not a substrate for phospholipid-sensitive Ca2+-dependent protein kinase. These results suggest the potential for nascent alpha chains of type I collagen to be susceptible to phosphorylation by cAMP-dependent protein kinase in vivo prior to triple-helix formation. Such a phosphorylation of collagen could be relevant to the action of cAMP to increase the intracellular degradation of newly synthesized collagen.  相似文献   

19.
The alpha subunit of the sodium channel purified from rat brain is rapidly and selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 3 to 4 mol of 32P/mol of saxitoxin-binding activity. The rate of phosphorylation is comparable to that of the synthetic peptide analog of the phosphorylation site of pyruvate kinase, one of the best substrates for cAMP-dependent protein kinase. An endogenous cAMP-dependent protein kinase that is present in the partially purified sodium channel preparations also selectively phosphorylates the alpha subunit. The specificity and rapidity of the phosphorylation reaction are consistent with the hypothesis that the alpha subunit is phosphorylated by cAMP-dependent protein kinase in vivo.  相似文献   

20.
J T Gasser  M P Chiesi  E Carafoli 《Biochemistry》1986,25(23):7615-7623
Phospholamban (PLB) from cardiac sarcoplasmic reticulum (SR) was phosphorylated under various conditions by the adenosine cyclic 3',5'-phosphate (cAMP)-dependent and/or the calmodulin-dependent protein kinase. The small shifts in apparent molecular weight resulting from the incorporation of Pi groups in the PLB complexes were analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel experiments, PLB was dissociated into its subunits and analyzed by using a newly developed isoelectric focusing system. The pI values of the PLB subunits phosphorylated by the cAMP- or calmodulin-dependent kinase were 6.2 and 6.4, respectively. Double phosphorylation of the same subunit resulted in an acidic shift of the pI to 5.2. The combined analysis of the behavior of the PLB complex and of its subunits has greatly simplified the interpretation of the complex phosphorylation pattern and has led to the following conclusions: The PLB complex is composed of five probably identical subunits, each of them containing a distinct phosphorylation site for the calmodulin- and the cAMP-dependent kinase. The population of PLB interacting with the endogenous calmodulin-dependent kinase cannot be phosphorylated by the cAMP-dependent kinase unless previously phosphorylated in the presence of calmodulin. It was also observed that after maximal phosphorylation of PLB in the presence of very large amounts of the cAMP-dependent protein kinase, the Ca2+ pumping rate of the cardiac SR ATPase is stimulated up to 5-fold, i.e., a level of a stimulation which exceeds considerably the values so far reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号