首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of the alcohol oxidase enzyme system of Pichia pastoris, during the whole-cell bioconversion of ethanol to acetaldehyde, was due to catabolite inactivation. Electron microscopy showed that methanol-grown cells contained peroxisomes but were devoid of these microbodies after the bioconversion. Acetaldehyde in the presence of O2 was the effector of catabolite inactivation. The process was initiated by the appearance of free acetaldehyde, and was characterized by an increase in the level of cyclic AMP, that coincided with a rapid 55% drop in alcohol oxidase activity. Further enzyme inactivation, believed to be due to proteolytic degradation, then proceeded at a constant but slower rate and was complete 21 h after acetaldehyde appearance. The rate of catabolite inactivation was dependent on acetaldehyde concentration up to 0.14 mM. It was temperature dependent and occurred within 24 h at 37°C and by 6 days at 15°C but not at 3°C. Alcohol oxidase activity was psychrotolerant, with only a 17% decrease in initial specific activity over a temperature drop from 37 to 3°C. In contrast, protease activity was inhibited at temperatures below 15°C. When the bioconversion was run at 3°C, catabolite inactivation was prevented. In the presence of 3 M Tris hydrochloride buffer, 123 g of acetaldehyde per liter was produced at 3°C, compared with 58 g/liter at 30°C. By using 0.5 M Tris in a cyclic-batch procedure, 140.6 g of acetaldehyde was produced.  相似文献   

2.
Zusammenfassung Die Wirkung des in Wasser gegebenen Thioharnstoffs auf den Sauerstoffverbrauch der Fische (Carassius auratus gibelio Bloch.) wird untersucht. Die Fische waren an niedrige Temperaturen angepaßt.Der Sauerstoffverbrauch der Fische bei niedrigen Temperaturen (7–9° C) während einer 30tägigen Behandlung mit Thioharnstoff (1 g/l) erreicht eine durchschnittliche Steigerung von 61,23%.In ähnlichen Temperaturbedingungen (5–7° C) und während der gleichen Behandlungsperiode verursacht eine doppelte Thioharnstoffdosis (2 g/l) eine Steigerung des Sauerstoffverbrauchs der Fische.Der hypermetabolische Effekt des Thioharnstoffs ist schon nach den ersten drei Tagen der Behandlung deutlich; er zeigt eine beträchtliche Verminderung in den folgenden 24 Std nach dem Einstellen der Behandlung.
The action of thiourea administered in water on the oxygen consumption of fishes in hypothermic conditions
Summary The action of thiourea administered in water on the oxygen consumption of fishes (Carassius auratus gibelio Bloch.) acclimatized to low temperatures (7–9° C) was investigated.The results of the performed experiments led to the following conclusions.At 7 to 9° C, during a thiourea treatment period of 30 days (1 g/l of water), the oxygen consumption of fishes recorded an average increase by 61.23 per cent.Under similar conditions (5–7° C) and doubling the thiourea dosis (2 g/l of water) an increase of the oxygen consumption by 158.92 per cent was stated.The hypermetabolic effect of thiourea is onsetting after the first three days of treatment and decreases significantly only after 24 hours from stopping the latter.
  相似文献   

3.
Summary The effects of temperature (20°, 25°, 30° C), pH (7.5, 8.0, 8.5) and dissolved oxygen (40%, 45%, 50%, 55%, 60% of concentration in air-saturated medium) on the growth of Brevibacterium linens were studied with cultures on sodium l-lactate and casamino acids in a regulated fermentor, using a factorial design methodology and an analysis of variance programme. The effect on growth rates was very striking: an extremely significant quadratic effect of oxygen, a marked negative effect of pH and a great negative interaction between pH and temperature were observed. Growth, transition from cocci to rods and pigmentation were inhibited by dissolved oxygen levels of 40% and 60%, while the level 50% produced higher absorbance values and growth rates.  相似文献   

4.
A strain of Bacillus sp. coded JMa5 was isolated from molasses contaminated soil. The strain was able to grow at a temperature as high as 45°C and in 250 g/l molasses although the optimal growth temperature was 35–37°C. Cell density reached 30 g/l 8 h after inoculation in a batch culture with an initial concentration of 210 g/l molasses. Under fed-batch conditions, the cells grew to a dry weight of 70 g/l after 30 h of fermentation. The strain accumulated 25–35%, (w/w) polyhydroxybutyrate (PHB) during fermentation. PHB accumulation was a growth-associated process. Factors that normally promote PHB production include high ratios of carbon to nitrogen, and carbon to phosphorus in growth media. Low dissolved oxygen supply resulted in sporulation, which reduced PHB contents and dry weights of the cells. It seems that sporulation induced by reduced supply of nutrients is the reason that PHB content is generally low in the Bacillus strain.  相似文献   

5.
Microbial production of xylitol from D-xylose using Candida tropicalis   总被引:1,自引:0,他引:1  
Candida tropicalis DSM 7524 was used to produce xylitol from d-xylose. The fermentation conditions were optimized during continuous cultivation. The strain employed showed no great dependence upon temperature in a range between 30° C and 37° C. It achieved its best yield of xylitol from d-xylose at a pH value of 2.5. Such low pH values allow non sterile cultivation, which is a major economic factor. With an oxygen uptake rate of 0.8–1 ml oxygen per litre culture medium, the C. tropicalis produce xylitol at a yield of between 77% and 80% of the theoretical value. Higher yeast extract concentrations prevent the conversion of d-xylose into xylitol. d-xylose acts as a growth inhibitor in higher concentrations. The maximum xylitol yield was reached at a d-xylose concentration of around 100 g/l. In a non sterile batch culture with substrate shift 220 g/l xylitol were produced from 300 g/l d-xylose at a xylitol productivity rate of 0.37 g/(lh). In order to increase the specific yield, C. tropicalis was immobilised on porous glass and cultivated in a fluidized bed reactor. In a continuous non sterile cultivation with immobilised cells 155 g/l d-xylose produced 90–95% g/l xylitol with a productivity of 1.35 g/(lh).Mr. S. S. da Silva was a visiting scientist to the GBF. He was supported by a scholarship from the National Council of Scientific and Technological Development, Brasilia, Brazil (CNPq).We also would like to gratefully acknowledge the support of Prof. Dr. Michele Vitolo of the University of Sao Paulo, and the Centre for Biotechnology and Chemistry, Lorena, S. P. Brazil, in particular the Department of Fermentative Process.We are grateful to Prof. Rainer Jonas, head of the International Cooperation between Germany/Brazil for the helpful discussions and Dr. Heinrich Lönsdorf (GBF) for the Scanning electron micrographs.Dedicated to the 65th birthday of Prof. Dr. Fritz Wagner.  相似文献   

6.
 The strain Penicillium purpurogenum P-26 was subjected to UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine treatment and mutants were isolated capable of synthesizing cellulase under the conditions of a high concentration of glucose. Initially mutants resistant to catabolite repression by 2-deoxy-D-glucose were isolated on Walseth’s cellulose/agar plates containing 15–45 mM 2-deoxy-D-glucose. These mutants were again screened for resistance to catabolite repression by glycerol or glucose on Walseth’s cellulose/agar plates containing 50 g/l glycerol or 50 g/l glucose respectively. Four mutants with different sizes of clearing zone on Walseth’s cellulose/agar plates containing 50 g/l glucose were selected for flask culture. Among them, the mutant NTUV-45-4 showed better carboxymethylcellulase activity in flask culture containing 1% Avicel plus 3% glucose than did the parental strain. Received: 9 October 1995/Received revision: 27 November 1995/Accepted: 8 January 1996  相似文献   

7.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

8.
The production of lipase by Candida rugosa in batch cultures was studied. The initial concentration of the carbon source employed, oleic acid, had an important effect on the final lipolytic activity levels. The maximum lipase/substrate yield and specific productivity obtained correspond to an initial oleic acid concentration of 2 g/l. At higher concentrations, up to 8 g/l oleic acid, specific productivity decreased. Lipase production was not observed below 1 g/l oleic acid. Lipase inactivation in culture broth due to surface forces and shear stress at the gas/liquid interface was not observed. There was no shear stress denaturation at stirring rates of 250, 500 and 750 rpm. No temperature inactivation was detected up to 50° C. Two different lipases with a similar molecular weight of 60kDa were purified from culture broth.  相似文献   

9.
Vitreoscilla hemoglobin (VHb) gene vgb equipped with a native promoter Pvgb or a tac promoter Ptac was introduced into Corynebacterium glutamicum ATCC14067, respectively. Ptac was proven to be more suitable for expressing VHb protein in higher concentration in both Escherichia coli and C. glutamicum strains compared with the native vgb promoter Pvgb. VHb-expressing C. glutamicum exhibited higher oxygen uptake rate and enhanced cell growth. Recombinant C. glutamicum harboring vgb gene equipped with Ptac promoter produced 23% more l-glutamate in shake-flask culture and grew to 30% more cell density and formed 22% more l-glutamate in fermentor studies compared with the wild-type strain. When a site-directed mutagenesis in which Tyr405 was replaced by a phenylalanine residue (Y405F) was performed on glutamine synthesis gene, recombinant C. glutamicum overexpressing the mutated gene glnA′ was able to produce l-glutamine effectively. Co-expression of vgb and glnA′ genes in C. glutamicum produced 17 g/l l-glutamine in shake flask culture, approximately 30% more than that produced by the recombinant harboring only glnA′ gene. In fermentor cultivation, the recombinant yielded 25% more cells and produced 40.5 g/l l-glutamine. In this study, it was clearly demonstrated that VHb significantly enhanced cell growth, l-glutamate, and l-glutamine production by recombinant C. glutamicum.  相似文献   

10.
Some factors affecting the respiration of some aquatic plants   总被引:3,自引:3,他引:0  
M. Owens  P. J. Maris 《Hydrobiologia》1964,23(3-4):533-543
Summary The oxygen consumption of four aquatic plants has been determined at various concentrations of dissolved oxygen and at three different temperatures.Oxygen consumption rates (mg oxygen/g dry weight per hr) at 20°C in air-saturated water were Berula erecta, 1.25; Callitriche obtusangula, 2.8; Hippuris vulgaris, 1.96; and Ranunculus pseudofluitans, 1.90.Oxygen consumption rates increased with increase in dissolved-oxygen concentration within the experimental limits of 1.2–17 p.p.m. dissolved oxygen. The relation of oxygen consumption to this range of oxygen concentrations can be described by the empirical equation R = aC b. Increase of temperature has been shown to increase the rates of oxygen consumption. Q10 values ranging from 1.32 to 3.48 have been obtained.  相似文献   

11.
Summary Fifty-one methylotrophs were checked with respect to their ability of poly--hydroxybutyric acid (PHB) production from methanol. One of them, Pseudomonas sp. K, was chosen from its good growth on a minimum synthetic medium. Optimal temperature and pH for its growth were 30° C and 7.0, respectively. Concentrations of PO 4 3- and NH 4 + in the medium should be kept at low levels. PHB formation was stimulated by deficiency of nutrient such as NH 4 + , SO 4 2- , Mg2+, Fe2+ or Mn2+. Among them, nitrogen deficiency was chosen from its effectiveness and easiness for PHB accumulation.The microorganism was cultivated to produce a large amount of poly--hydroxybutyric acid (PHB) from methanol by means of microcomputer-aided fully automatic fed-batch culture technique. During the cultivation, temperature, dissolved oxygen concentration (DO), and methanol concentration in the culture broth were maintained at 30° C 2.5±0.5 ppm and 0.5±0.2 g/l, respectively. Other nutrients, nitrogen source and mineral ions, were also controlled to maintain their initial concentrations in the medium during cell growth phase. When the high cell concentration was achieved (160 g/l), feedings of ammonia and minerals were stopped and only methanol was supplied successively to accumulate PHB. At 175 h, high concentration of PHB (136 g/l) was obtained and total cell concentration became 206 g/l. DO must be maintained above the critical level during the PHB formation phase, too. PHB yield from methanol (g PHB/g methanol) was 0.18 and the maximum PHB content reached 66% of dry weight. Solid PHB produced by the strain had the melting point of 176° C and the average molecular weight of 3.0x105.  相似文献   

12.
A single-stage continuous fermentation process for the production of 2-keto-l-gulonic acid (2KGA) from l-sorbose using Ketogulonigenium vulgare DSM 4025 was developed. The chemostat culture with the dilution rate that was calculated based on the relationship between the 2KGA production rate and the 2KGA concentration was feasible for production with high concentration of 2KGA. In this system, 112.2 g/L of 2KGA on the average was continuously produced from 114 g/L of l-sorbose. A steady state of the fermentation was maintained for the duration of more than 110 h. The dilution rate was kept in the range of 0.035 and 0.043 h−1, and the 2KGA productivity was 3.90 to 4.80 g/L/h. The average molar conversion yield of 2KGA from l-sorbose was 91.3%. Under the optimal conditions, l-sorbose concentration was kept at 0 g/L. Meanwhile, the dissolved oxygen level was changing in response to the dilution rate and 2KGA concentration. In the dissolved oxygen (DO) range of 16% to 58%, it was revealed that the relationship between DO and D possessed high degree of positive correlation under the l-sorbose limiting condition (complete consumption of l-sorbose). Increasing D closer to the critical value for washing out point of the continuous fermentation, DO value tended to be gradually increased up to 58%. In conclusion, an efficient and reproducible continuous fermentation process for 2KGA production by K. vulgare DSM 4025 could be developed using a medium containing baker’s yeast without using a second helper microorganism.  相似文献   

13.
Histidine decarboxylase production from Lactobacillus hilgardii 5w, isolated from wine, was inhibited by the presence of l-malic acid in the basal culture medium. The inhibition was related to l-malic acid concentration. The maximal production of the enzyme at 12 h of culture incubated at 30°C was inhibited 71% by 2 g/L l-malic acid and 47% by 0.5 g/L. In these conditions l-malic acid consumption was 16% and 20% respectively. The addition of 300 mg/L citric acid to the basal medium stimulated the enzyme production from 9 to 45 nmoles/min/mg dry weight, and the increase was correlated with citric acid concentration. When different concentrations of l-malic acid were added to the basal medium plus 200 mg/L citric acid, reversion of stimulation was observed, achieving the maximum at a concentration of 2 g/L. In this case, citric acid comsumption was not modified, whereas L-malic acid utilization was higher.  相似文献   

14.
The relationship between dissolved oxygen (DO) concentration, agitation rate and growth of Lavandula vera MM and rosmarinic acid biosynthesis was investigated in 3 l laboratory bioreactor. Lavandula vera MM cell suspension accumulated the highest amounts of biomass (34.8 g/l) and rosmarinic acid (1870.6 mg/l) on day 12 of cultivation at 50% dissolved oxygen and agitation speed 100 rpm and at 30% dissolved oxygen and agitation speed 300 rpm, respectively.  相似文献   

15.
A newly isolated Bacillus species, which grew optimally at 30°C and pH 10, produced a carboxymethylcellulase in a medium containing 10 g CM-cellulose/l. The enzyme, when partially purified by gel filtration, had a mass of about 29 kDa as determined by both SDS-PAGE and gel filtration chromatography. It was optimally active at pH 9.5 and 40°C, and was stable from pH 7 to 11 at 4°C for 24 h. The enzyme was stimulated by Ca2+ (1mm) but was completely inhibited by Hg2+ (1mm). Neither EDTA nor EGTA (10mm) affected the activity.The author is with the Department of Biological Sciences, University of Jordan. PO Box 2686, Amman 11181, Jordan  相似文献   

16.
Summary A flocculent strain of Zymomonas mobilis was used for ethanol production from sucrose. Using a fermentor with cell recycle (internal and external settler) high sugar conversion and ethanol productivity were obtained. At a dilution rate of 0.5 h-1 (giving 96% sugar conversion) the ethanol productivity, yield and concentrations respectively were 20 g/l/h, 0.45 g/g and 40 g/l using a medium containing 100 g/l sucrose. At a sucrose concentration of 150 g/l, the ethanol concentration reached 60 g/l. The ethanol yield was 80% theoretical due to levan and fructo-oligomer formation. No sorbitol was detected. This fermentation was conducted at a range of conditions from 30 to 36°C and from pH 4.0 to 5.5.  相似文献   

17.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28°C and 300 rpm for 16–20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28°C, and 40–60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD. Received: 26 September 2002 / Accepted: 24 October 2002  相似文献   

18.
Summary Zymomonas mobilis, strain ATCC 10988, was used to evaluate the effects of pH (5.0 to 8.0), temperature (30°C to 40°C), and initial glucose concentration (75 g/l to 150 g/l) on the kinetics of ethanol production from glucose using batch fermentation. Specific ethanol production rate was maximum and nearly constant over a pH range of 6.0 to 7.5. End-of-batch ethanol yield and specific growth rate were insensitive to pH in the range of 5.0 to 7.5. End-of-batch ethanol yield was maximum and nearly constant between 30°C and 37°C but decreased by 24% between 37°C and 40°C. All other kinetic parameters are greatest at 34°C. End-of-batch ethanol yield is maximum at an initial glucose concentration of 100 g/l. Specific growth rate reaches a maximum at 75 g/l, but specific ethanol production rate decreases throughout the range. The optimum initial glucose concentration of 100 g/l gives the highest ethanol yield at a specific ethanol production rate less than 10% below the maximum observed.  相似文献   

19.
Summary Experiments were performed to investigate growth, ethanol and glycerol production by wild-type strains (RHO) and respiratory-deficient (rho) mutants of Saccharomyces cerevisiae. Furthermore protoplasts were fused in order to enhance the fermentation capacity of a flocculent strain. At high substrate conditions, 150 g/l of saccharose, there is no difference in cell growth. However, at a glucose concentration of 10–20 g/l the mutants grow much slower. After 3 days of incubation at 28° C in a complete medium the viability of the two strains is the same. In minimal medium on the other hand the number of viable cells of the mutant is 100-fold reduced. All mutants tested showed a higher specific activity of alcohol dehydrogenase (ADH I) and an enhanced production of glycerol compared with the wild-type strain. By protoplast fusion a modified flocculent strain was obtained with higher specific activity of ADH I and a reduced biosynthesis of glycerol. However, the yields of ethanol (75–78%) are about the same for the wild-type strain and the rho mutants under aerobic conditions in absence of catabolite repression.  相似文献   

20.
Summary A bacterium that stereospecifically produces D-p-hydroxyphenylglycine (D-PHPG) from DL-5-p-hydroxyphenylhydantoin (DL-5-PHPH) was isolated from soil and identified as Agrobacterium sp. IP-I 671. The hydantoinase and the N-carbamyl-amino acid amido-hydrolase involved in this biotransformation process were both strictly D-stereospecific. Their biosynthesis was found to be inducible by addition of 2-thiouracil to the cultivation media, or to a lesser extent by uracil. The amidohydrolase activity of Agrobacterium sp. was strongly inhibited by ammonium ions co-produced with D-PHPG, whereas the hydantoinase activity under the same conditions was unaffected. Optimum temperature and pH were respectively 55° C and 10 for the partially purified hydantoinase, 45° and 6.75 when resting cells were used. Biotransformation under these slightly acidic conditions allowed to complete conversion of 30 g/1 DL-5-PHPH into 25 g/l of D-PHPG (molar yield 96%) and involved enzymatic racemization of DL-5-PHPH. Offprint requests to: S. Runser  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号