首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Promoter regions of milk protein genes are frequently used to produce pharmaceutically and medically important proteins in the mammary gland of transgenic animals and also can be used for the construction of an inducible eukaryotic expression vector. The aim of the present study was to clone, sequence and characterize the regulatory elements in ovine alphaS1-CSNGP. For the first time we have cloned and sequenced region extending from - 2136 to +49 bp containing 5'-flanking region and exon I. Computational analysis of the sequence showed presence of core promoter elements viz., TATA box, CAAT box and initiator sequence. Mammary gland specific sequences included MGF/STAT 5, MPBF, Yu Lee 2, 4 and 5, Oka box C and hormone responsive elements (HRE) viz., GRE, PRE, PRL, IRE and also Polyoma enhancer 3 sequences. Computational analysis data is validated by following the reporter gene expression studies in rat breast cell line. Six reporter gene constructs under the control of full length, proximal, distal, minimal and proximal-distal fused promoter segments were constructed to assess the effect of presence or absence of few selected regulatory elements on expression ability of the promoter. Based on qualitative evaluation of fluorescence, the pGFP-F/VspI showed highest fluorescence followed by pGFP-P, pGFP-F/SpeI, pGFPminimal and pGFP-D.  相似文献   

2.
Transgene expression in the mammary glands of newborn rats was studied to establish an early selection system for transgenic animals producing exogenous proteins in their milk during lactation. A fusion gene composed of the bovine alpha S1 casein gene promoter and the human growth hormone gene was microinjected into rat embryos. Transgenic lines that produced human growth hormone in their milk were established and used in this study. Immediately after birth, and without any hormone treatment, human growth hormone was found in the extracts of mammary glands from both male and female rats derived from the line secreting human growth hormone in their milk. The expression of the transgene in mammary glands of newborn rats was also detected by the presence of human growth hormone mRNA. Nontransgenic newborn rats did not express the human growth hormone gene in their mammary glands, while the mRNA for rat alpha casein, an endogenous milk protein, was found in all mammary glands from both transgenic and nontransgenic neonates. These results show that analyzing the expression of transgenes in the mammary glands of neonates is a valuable tool to select the desired transgenic animals and to shorten the selection schedules establishing the transgenic animals. © 1996 Wiley-Liss, Inc.  相似文献   

3.
转基因动物的乳腺表达   总被引:11,自引:0,他引:11  
转基因动物乳腺组织特异性表达异源基因是近年来基因工程中引人注目的途径.文章介绍了这一途径有关的乳汁蛋白基因、乳汁蛋白基因与异源基因的融合方式、重组基因的必要构成以及可能影响高效表达的因素.  相似文献   

4.
5.
6.
7.
Summary

Transgenic mice expressing foreign genes specifically in their mammary glands have been obtained by several groups in the world. The mouse is generally considered as a good reference animal to evaluate the efficiency of gene constructs to be used in larger mammals for the preparation of the corresponding recombinant proteins at an industrial scale. The method described here shows that mammary glands from lactating mice separated from their pups for one day spontaneously released 1.5 ml milk when stored at O'C. The proteins of milk obtained by this method were essentially similar to those obtained after milking. Human growth hormone (hGH) gene under the control of the rabbit whey acidic (WAP) gene promoter was expressed at a high level in the milk of transgenic mice (4 mg/ml milk in the mice examined here). hGH was present in milk obtained after milking or after the incubation of the mammary glands at O'C. In both cases, the hormone was present in essentially similar concentration, undegraded and biologically active (as judged by its prolactin‐like activity). The method depicted here is very simple and can be applied easily to many mice. Its major limitation is that it implies the breeding and the sacrifice of a relatively large number of animals. One gram of crude recombinant protein can be virtually obtained in this way with about 200 lactating mice from their milk containing the proteins at the concentration of 3‐4 mg/ml. The milk of transgenic mice can therefore be considered as a practical source of recombinant proteins for biochemical and pharmaceutical studies.  相似文献   

8.
通过遗传工程技术获得的转基因动植物对分析某些生化过程和发育途径极为有用。通过化学诱导剂作用于启动子的条件性基因表达是分子生物学和生物技术应用研究中的强有力的手段。建立于目标基因激活和失活基础之上的几个化学分子诱导基因表达系统已有报道。将来自于原核生物、昆虫和其它动物的调节因子应用于新的物种有利于促进转基因技术的应用和有关基因的时空表达研究。本文综述了有关的基因表达调节系统 ,启动子激活的基因表达系统 ,启动子失活的基因表达系统 ,以及可诱导的基因过度表达和反义抑制系统  相似文献   

9.
10.
The advent of transgenic technology has provided methods for the production of pharmaceuticals by the isolation of these proteins from transgenic animals. The mammary gland has been focused on as a bioreactor, since milk is easily collected from lactating animals and protein production can be expressed at very high levels, including hormones and enzymes. We demonstrate here the expression pattern of recombinant human growth hormone (rhGH) in transgenic rabbits carrying hGH genomic sequences driven by the rat whey acidic protein (WAP) promoter. The transgene was mapped to the q26-27 telomere region of chromosome 7q by fluorescence in situ hybridization (FISH). Nearly 30 % of the F1 generation demonstrated the presence of transgene. The recombinant growth hormone was detected in the milk of the transgenic rabbit females, but not in serum, up to the level of 10???g/ml. Ectopic expression of the transgene in the brain, heart, kidney, liver, and salivary gland was not observed, indicating that a short sequence of rat WAP promoter (969 bp) contained essential sequences directing expression exclusively to the mammary gland. The biological activity of recombinant growth hormone was measured by immunoreactivity and the capability to stimulate growth of the hormone-dependent Nb211 cell line.  相似文献   

11.
We have previously demonstrated that IGFBP-5 production by mammary epithelial cells increases dramatically during involution of the mammary gland. To demonstrate a causal relationship between IGFBP-5 and cell death we created transgenic mice expressing IGFBP-5 in the mammary gland using a mammary-specific promoter, beta-lactoglobulin. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Histological analysis indicated reduced numbers of alveolar end buds, with decreased ductal branching. Transgenic dams produced IGFBP-5 in their milk at concentrations similar to those achieved at the end of normal lactation. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. BrdU labelling was decreased, whereas DNA ladders were increased in transgenic animals on day 1 of lactation. On day 2 postpartum, the epithelial invasion of the mammary fat pad was clearly impaired in transgenic animals. The concentrations of the pro-apoptotic molecule caspase-3 and of plasmin were both increased in transgenic animals whilst the concentrations of 2 prosurvival molecules Bcl-2 and Bcl-x(L)were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I we examined IGF receptor phosphorylation and Akt phosphorylation and showed that both were inhibited. We attempted to "rescue" the transgenic phenotype by using growth hormone to increase endogenous IGF-I concentrations or by implanting minipumps delivering an IGF-1 analogue, R(3)-IGF-1, which binds weakly to IGFBP-5. Growth hormone treatment failed to affect mammary development suggesting that increased concentrations of endogenous IGF-1 are insufficient to overcome the high concentrations of IGFBP-5 produced by these transgenic animals. In contrast mammary development (gland weight and DNA content) was normalised by R3-IGF-I although milk production was only partially restored. This is the first demonstration that over-expression of IGFBP-5 can lead to; impaired mammary development, increased expression of the pro-apoptotic molecule caspase-3, increased plasmin generation and decreased expression of pro-survival molecules of the Bcl-2 family. It clearly demonstrates that IGF-I is an important developmental/survival factor for the mammary gland and, furthermore, this cell death programme may be utilised in a wide variety of tissues.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
We have investigated, in mice, an in vivo method for producing low-lactose milk, based on the creation of transgenic animals carrying a hybrid gene in which the intestinal lactase-phlorizin hydrolase cDNA was placed under the control of the mammary-specific alpha-lactalbumin promoter. Transgenic females expressed lactase protein and activity during lactation at the apical side of mammary alveolar cells. Active lactase was also secreted into milk, anchored in the outer membrane of fat globules. Lactase synthesis in the mammary gland caused a significant decrease in milk lactose (50-85%) without obvious changes in fat and protein concentrations. Sucklings nourished with low-lactose milk developed normally. Hence, these data validate the use of transgenic animals expressing lactase in the mammary gland to produce low-lactose milk in vivo, and they demonstrate that the secretion of an intestinal digestive enzyme into milk can selectively modify its composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号