首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

2.

Background

Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest.

Methodology/Principal Findings

By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves.

Conclusions/Significance

We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.  相似文献   

3.
Beatty GE  Provan J 《Molecular ecology》2010,19(22):5009-5021
Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596 bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O. secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia.  相似文献   

4.
The North American beluga whale Delphinapterus leucas population has been divided into a number of putative geographical stocks based upon migration routes and areas of summer concentration. Nucleotide sequences of the mitochondrial DNA (mtDNA) control region were used to assess whether these geographical stocks are genetically distinct. Beluga whale samples from 25 sites were collected primarily from aboriginal subsistence hunts across North America from 1984 to 1994. Thirty-nine mtDNA haplotypes were identified in 628 beluga samples. No differences were found in the distribution of haplotypes between male and female beluga whales at any sampling site. These haplotypes segregated into two distinct assemblages in both a haplotype network and a neighbour-joining tree. The haplotype assemblages had a geographically disjunct distribution that suggests postglacial recolonization of the North American Arctic from two different refugia.
An analysis of molecular variance based on haplotype relationships and frequency indicated genetic heterogeneity among beluga whale summering groups ( P ≤ 0.001). Sequence divergence estimates between sampling sites also indicated geographical differentiation, particularly between samples taken at east Hudson Bay or St Lawrence River and the western or central Arctic. The results of this study show a high degree of philopatry to specific summering areas by this highly mobile animal.  相似文献   

5.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

6.
To determine extant patterns of population genetic structure in common ash and gain insight into postglacial recolonization processes, we applied multilocus-based Bayesian approaches to data from 36 European populations genotyped at five nuclear microsatellite loci. We identified two contrasting patterns in terms of population genetic structure: (1) a large area from the British Isles to Lithuania throughout central Europe constituted effectively a single deme, whereas (2) strong genetic differentiation occurred over short distances in Sweden and southeastern Europe. Concomitant geographical variation was observed in estimates of allelic richness and genetic diversity, which were lowest in populations from southeastern Europe, that is, in regions close to putative ice age refuges, but high in western and central Europe, that is, in more recently recolonized areas. We suggest that in southeastern Europe, restricted postglacial gene flow caused by a rapid expansion of refuge populations in a mountainous topography is responsible for the observed strong genetic structure. In contrast, admixture of previously differentiated gene pools and high gene flow at the onset of postglacial recolonization of western and central Europe would have homogenized the genetic structure and raised the levels of genetic diversity above values in the refuges.  相似文献   

7.
The brown bears of coastal Alaska have been recently regarded as comprising from one to three distinct genetic groups. We sampled brown bears from each of the regions for which hypotheses of genetic uniqueness have been made, including the bears of the Kodiak Archipelago and the bears of Admiralty, Baranof and Chichagof (ABC) Islands in southeast Alaska. These samples were analysed with a suite of nuclear microsatellite markers. The 'big brown bears' of coastal Alaska were found to be part of the continuous continental distribution of brown bears, and not genetically isolated from the physically smaller 'grizzly bears' of the interior. By contrast, Kodiak brown bears appear to have experienced little or no genetic exchange with continental populations in recent generations. The bears of the ABC Islands, which have previously been shown to undergo little or no female-mediated gene flow with mainland populations, were found not to be genetically isolated from mainland bears. The data from the four insular populations indicate that female and male dispersal can be reduced or eliminated by water barriers of 2–4 km and 7km in width, respectively.  相似文献   

8.
The bullhead Cottus gobio is a small, bottom-dwelling fish consisting of populations that have not been subject to transplantations or artificial stocking. It is therefore an ideal model species for studying the colonization history of central European freshwater systems, in particular with respect to the possible influences of the Pleistocene glaciation cycles. We sampled Cottus populations across most of its distribution range, with a special emphasis on southern Germany where the major European drainage systems are in closest contact. Mitochondrial D-loop sequencing of more than 400 specimens and phylogenetic network analysis allowed us to draw a detailed picture of the colonization of Europe by C. gobio. Moreover, the molecular distances between the haplotypes enabled us to infer an approximate time frame for the origin of the various populations. The founder population of C. gobio stems apparently from the Paratethys and invaded Europe in the Pliocene. From there, the first colonization into central Europe occurred via the ancient lower Danube, with a separate colonization of the eastern European territories. During the late Pliocene, one of the central European populations must have reached the North Sea in a second step after which it then started to colonize the Atlantic drainages via coastal lines. Accordingly, we found very distinct populations in the upper and lower Rhine, which can be explained by the fact that the lower Rhine was disconnected from the upper Rhine until approximately 1 million years ago (Ma). More closely related, but still distinct, populations were found in the Elbe, the Main and the upper Danube, all presumably of Pleistocene origin. Intriguingly, they have largely maintained their population identity, despite the strong disturbance caused by the glaciation cycles in these areas. On the other hand, a mixing of populations during postglacial recolonization could be detected in the lower Rhine and its tributaries. However, the general pattern that emerges from our analysis suggests that the glaciation cycles did not have a major impact on the general population structure of C. gobio in central Europe.  相似文献   

9.
Runck AM  Cook JA 《Molecular ecology》2005,14(5):1445-1456
Dynamic climatic oscillations of the Pleistocene dramatically changed the distributions of high latitude species. Molecular investigations of a variety of organisms show that processes of postglacial colonization of boreal regions were more complex than initially thought. Phylogeographical and coalescent analyses were conducted on partial sequences of the cytochrome b gene (600 bp) from 64 individuals of Clethrionomys gapperi from North Carolina, Pennsylvania, Minnesota, Idaho, Washington, British Columbia, Northwest Territories, and Alaska to test hypotheses relating to Pleistocene refugia and postglacial colonization routes. Three divergent clades (east, west, central) were identified with highest net divergence (dA = 5.2%) between the eastern and western clades. Populations from the recently deglaciated higher latitudes of Canada and Alaska are closely related to lower latitude populations of the central clade (dA = 1.2%) suggesting recent expansion from this midwestern region. No representatives from the east or west clade were found at latitudes higher than 50 degrees N, indicating that postglacial colonization occurred through a midcontinental route. The high latitude population from the Northwest Territories exhibited demographic patterns and genetic diversity consistent with a stable noncolonizing population. This population is found near the Mackenzie range, where the two continental ice sheets were believed to have coalesced. Molecular variation observed in this population may be the result of leading edge population diversifying in the continental corridor or may reflect the signal of a high latitude refugial population.  相似文献   

10.
Knowledge of population genetic structure of tanoak (Lithocarpus densiflorus) is of interest to pathologists seeking natural variation in resistance to sudden oak death disease, to resource managers who need indications of conservation priorities in this species now threatened by the introduced pathogen (Phytophthora ramorum), and to biologists with interests in demographic processes that have shaped plant populations. We investigated population genetic structure using nuclear and chloroplast DNA (cpDNA) and inferred the effects of past population demographic processes and contemporary gene flow. Our cpDNA results revealed a strong pattern of differentiation of four regional groups (coastal California, southern Oregon, Klamath mountains, and Sierra Nevada). The chloroplast haplotype phylogeny suggests relatively deep divergence of Sierra Nevada and Klamath populations from those of coastal California and southern Oregon. A widespread coastal California haplotype may have resulted from multiple refugial sites during the Last Glacial Maximum or from rapid recolonization from few refugia. Analysis of nuclear microsatellites suggests two major groups: (1) central coastal California and (2) Sierra Nevada/Klamath/southern Oregon and an area of admixture in north coastal California. The low level of nuclear differentiation is likely to be due to pollen gene flow among populations during postglacial range expansion.  相似文献   

11.
Species may often exhibit geographic variation in population genetic structure due to contemporary and historical variation in population size and gene flow. Here, we test the predictions that populations on the margins of a species' distribution contain less genetic variation and are more differentiated than populations towards the core of the range by comparing patterns of genetic variation at five microsatellite loci between disjunct and core populations of the perennial, allohexaploid herb Geum triflorum. We sampled nine populations isolated on alvar habitat within the eastern Great Lakes region in North America, habitats that include disjunct populations of several plant species, and compared these to 16 populations sampled from prairie habitat throughout the core of the species' distribution in midwestern Canada and the USA. Alvar populations exhibited much lower within-population diversity and contained only a subset of alleles found in prairie populations. We detected isolation by distance across the species' range and within alvar and prairie regions separately. As predicted, genetic differentiation was higher among alvar populations than among prairie populations, even after controlling for the geographic distance between sampled populations. Low diversity and high differentiation can be accounted for by the greater contemporary spatial isolation of alvar populations. However, the genetic structure of alvar populations may also have been influenced by postglacial range expansion and contraction. Our results are consistent with alvar populations being founded during an expansion of prairie habitat during the warmer, hypsithermal period approximately 5000 bp and subsequently becoming stranded on isolated alvar habitat as the climate grew cooler and wetter.  相似文献   

12.
Hairy woodpeckers Picoides villosus are a common, year round resident with distinct plumage and morphological variation across North America. We genotyped 335 individuals at six variable microsatellite loci and analyzed 322 mtDNA control region sequences in order to examine the role of contemporary and historical barriers to gene flow. In addition we combined genetic analyses with ecological niche modelling to test if hairy woodpeckers were isolated in northern refugia (Alaska, Newfoundland and the Queen Charlotte Islands) during the last glacial maximum. Genetic analyses revealed that gene flow among North American hairy woodpecker populations is restricted, but not to the extent predicted for a sedentary species. Populations clustered into two main genetic groups, east and west of the Great Plains in the south and the Rocky Mountains in the north. Contact zones between the two main genetic groups exist in central British Columbia and Washington, but are narrow. Within each group we found additional population structure with genetic breaks between subgroups in the geographic west corresponding to breaks in forested habitat and physical barriers like open expanses of water. Population genetic patterns for hairy woodpeckers have resulted from isolation in multiple southern refugia with the current distribution of genetic groups resulting from post‐glacial expansion and subsequent reduction in gene flow. While populations in Alaska, Newfoundland and the Queen Charlotte Islands are genetically distinct from other populations, we found no evidence of these areas acting as refugia throughout the Pleistocene. Atlantic Canada populations contained unique haplotypes raising the possibility of a separate colonization from the rest of eastern Canada. The endemic subspecies on the island of Newfoundland is not genetically distinct from their closest mainland population unlike the Queen Charlotte Island subspecies.  相似文献   

13.
The evolutionary influences of historical and contemporary factors on the population connectivity and phylogeographic structure of a brown seaweed, Sargassum ilicifolium, were elucidated using the nuclear ITS2 and mitochondrial COI markers for the collections newly sampled within its distribution range in the northwestern Pacific (NWP). Significant genetic structure at variable levels was identified between populations (pairwise FST) and among populations grouped by geographical proximity (ΦCT among regions). The adjacent groups of populations with moderate structure revealed from AMOVA appeared to have high genetic connectivity. However, a lack of genealogical concordance with the geographic distribution was uncovered for S. ilicifolium from the NWP. Such genetic homogeneity is interpreted as a result of the interaction between postglacial recolonization and dynamic oceanic current regimes in the region. Two separated glacial refugia, the South China Sea and the Okinawa Trough, in the marginal seas of east China were recognized based on the presence of endemic haplotypes and high haplotype diversity in the populations at southern China and northeast of Taiwan. Populations persisting in these refugia may have served as the source for recolonization in the NWP with the rise of sea level during the warmer interglacial periods. The role of oceanic currents in maintaining genetic connectivity of S. ilicifolium in the region was further corroborated by the coherence between the direction of oceanic currents and that of gene flow, especially along the eastern coast of Taiwan. This study underlines the interaction between historical postglacial recolonization and contemporary coastal hydrodynamics in contributing to population connectivity and distribution for this tropical seaweed in the NWP.  相似文献   

14.
透骨草属(Phryma)是一个单种属,间断分布于东亚与北美东部.尽管东亚与北美东部居群形态差异非常小,但分子变异却非常明显.本研究进一步运用AFLP两对引物来衡量透骨草属的遗传多样性并评估其形态保守性.结果发现透骨草的遗传差异主要存在于两大洲的居群之间.聚类与PCA分析显示透骨草分成两大支与其地理分布相吻合,一支全部来自东亚,另一支则是北美东部的居群.我们的结果强烈支持透骨草东亚--北美东部居群存在明显的遗传分化和形态保守.  相似文献   

15.
The recent Wisconsin glaciation has provided opportunities for examining the effects of postglacial recolonization on the population genetics of plant and animal communities. In this study allozyme Variation was examined in 19 populations of the herbaceous perennial Asclepias exaltata occurring in previously glaciated regions of North America. These northern populations of A. exaltata possess significantly fewer polymorphic loci (46.31 ± 2.7; mean ± 1 SD), alleles per polymorphic locus (1.84 ± 0.24), and expected heterozygosity (0.133 ± 0.031) than populations found in the Pleistocene refugium in the southern Appalachians. Population-level allozyme diversity decreased linearly from south to north and from east to west. Nineteen uncommon alleles previously observed in southern Appalachian populations were undetected in the northern region. Seven common alleles exhibited a clinal change in allele frequency. Of these, only Pgd-1a and Mnr-1c were at low-frequency in the southern Appalachians and increased significantly with increasing latitude and longitude, respectively. Despite this loss of allozyme diversity following postglacial migration, northern populations of A. exaltata have higher allozyme diversity and lower population differentiation (G" = 0.1 17) than mean values for other long-lived herbaceous perennials. Increased habitat fragmentation in northern regions and potential habitat loss in the southern Appalachians are likely to reduce the historically rich gene pool that has provided the genetic stock for postglacial recoveries.  相似文献   

16.
Climatic oscillations during the Pleistocene epoch had a dramatic impact on the distribution of biota in the northern hemisphere. In order to trace glacial refugia and postglacial colonization routes on a global scale, we studied mitochondrial DNA sequence variation in a freshwater fish (burbot, Lota lota; Teleostei, Gadidae) with a circumpolar distribution. The subdivision of burbot in the subspecies Lota lota lota (Eurasia and Alaska) and Lota lota maculosa (North America, south of the Great Slave Lake) was reflected in two distinct mitochondrial lineages (average genetic distance is 2.08%). The lota form was characterized by 30 closely related haplotypes and a large part of its range (from Central Europe to Beringia) was characterized by two widespread ancestral haplotypes, implying that transcontinental exchange/migration was possible for cold-adapted freshwater taxa in recent evolutionary time. However, the derived mitochondrial variants observed in peripheral populations point to a recent separation from the core group and postglacial recolonization from distinct refugia. Beringia served as refuge from where L. l. lota dispersed southward into North America after the last glacial maximum. Genetic variation in the maculosa form consisted of three mitochondrial clades, which were linked to at least three southern refugia in North America. Two mitochondrial clades east of the Continental Divide (Mississippian and Missourian clades) had a distinct geographical distribution in the southern refuge zones but intergraded in the previously glaciated area. The third clade (Pacific) was exclusively found west of the Continental Divide.  相似文献   

17.
Phylogeographic structures of two weakly dispersing Mysis sibling species, one with a circumarctic coastal, the other with a boreal lacustrine-Baltic distribution, were studied from mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Mysis segerstralei showed high overall diversity and little phylogeographic structure across the Arctic, indicating late-glacial dispersal among coastal and lake populations from Alaska, Siberia and the north of Europe. A strongly divergent refugial lineage was however identified in Beringia. The boreal 'glacial relict'Mysis salemaai in turn displayed clear structuring among postglacially isolated Scandinavian lake populations. The inferred pattern of intralake mitochondrial DNA (mtDNA) monophyly in Scandinavia suggested relatively small population sizes and a remarkably fast postglacial mtDNA divergence rate (0.27% per 10 000 years). Nevertheless, the broader phylogeographic pattern did not support distinct eastern and western glacial refugia in Northern Europe, unlike in some other aquatic taxa. In all, the two species comprised three equidistant mitochondrial lineages (approximately 2% divergence), corresponding to M. salemaai, to the bulk of M. segerstralei, and to the Beringian M. segerstralei lineage. The lack of reciprocal monophyly of the two species in respect to their mitochondrial genealogy could indicate postspeciation mitochondrial introgression, also exemplified by an evidently more recent capture of M. segerstralei mitochondria in a Karelian population of M. salemaai. Overall, the data suggest that the continental boreal M. salemaai has a relatively recent ancestry in arctic coastal waters, whereas two other boreal 'glacial relict'Mysis sibling species in Europe (Mysis relicta) and North America (Mysis diluviana) have colonized inland waters much earlier (approximately 8% COI divergence).  相似文献   

18.
Hypochaeris palustris (Phil.) De Wild. is a species growing in the southern Andean chain. To elucidate potential Pleistocene refugia and recolonization routes in the southern Andes, we analysed amplified fragment length polymorphisms (AFLPs) in 206 individuals in 21 populations of H. palustris from the coastal Cordillera, the central, northern, and eastern ranges of the southern Andes, and Patagonia. Populations from the coastal Cordillera harboured more private AFLP fragments, and exhibited a higher frequency of polymorphic fragments as well as higher Shannon diversity than all other areas investigated. The comparison among pooled AFLP profiles of each region revealed that the central Andean ranges shared most fragments with populations from the margins of the distributional area in the Andes, in the N, E, and S (Patagonia). Phenetic analysis indicated close relationships among populations of the central ranges. Populations of the coastal Cordillera were shown to be highly differentiated from the Andean populations. It is very likely therefore that (1) H. palustris recolonized the central ranges of the southern Andes from nearby refugia, possibly unglaciated areas N, E, and/or S of its present distributional area; (2) the postglacial spread of H. palustris in the central ranges of the southern Andes occurred rapidly; and (3) the coastal Cordillera served as a refugium for H. palustris, but these populations did not contribute to the recolonization of the central Andean ranges.  相似文献   

19.
There is a growing consensus that much of the contemporary phylogeography of northern hemisphere coastal taxa reflects the impact of Pleistocene glaciation, when glaciers covered much of the coastline at higher latitudes and sea levels dropped by as much as 150 m. The genetic signature of postglacial recolonization has been detected in many marine species, but the effects of coastal glaciation are not ubiquitous, leading to suggestions that species may intrinsically differ in their ability to respond to the environmental change associated with glacial cycles. Such variation may indeed have a biological basis, but apparent differences in population structure among taxa may also stem from our heavy reliance on individual mitochondrial loci, which are strongly influenced by stochasticity during coalescence. We investigated the contemporary population genetics of Syngnathus typhle, one of the most widespread European coastal fish species, using a multilocus data set to investigate the influence of Pleistocene glaciation and reduced sea levels on its phylogeography. A strong signal of postglacial recolonization was detected at both the northern and eastern ends of the species’ distribution, while southern populations appear to have been relatively unaffected by the last glacial cycle. Patterns of population variation and differentiation at nuclear and mitochondrial loci differ significantly, but simulations indicate that these differences can be explained by the stochastic nature of the coalescent process. These results demonstrate the strength of a multilocus approach to phylogeography and suggest that an overdependence on mitochondrial loci may provide a misleading picture of population‐level processes.  相似文献   

20.
To unravel the postglacial colonization history and the current intercolony dispersal in the common eider, Somateria mollissima, we analysed genetic variation at a part of the mitochondrial control region and five unlinked autosomal microsatellite loci in 175 eiders from 11 breeding colonies, covering the entire European distribution range of this species. As a result of extreme female philopatry, mitochondrial DNA differentiation is substantial both among local colonies and among distant geographical regions. Our study further corroborates the previous hypothesis of a single Pleistocene refugium for European eiders. A nested clade analysis on mitochondrial haplotypes suggests that (i) the Baltic Sea eider population is genetically closest to a presumably ancestral population and that (ii) the postglacial recolonization progressed in a stepwise fashion via the North Sea region and the Faroe Islands to Iceland. Current long-distance dispersal is limited. Differentiation among colonies is much less pronounced at microsatellite loci. The geographical pattern of this nuclear genetic variation is to a large extent explained by isolation by distance. As female dispersal is very limited, the geographical pattern of nuclear variation is probably explained by male-mediated gene flow among breeding colonies. Our study provides genetic evidence for the assumed prominent postglacial colonization route shaping the present terrestrial fauna of the North Atlantic islands Iceland and the Faroes. It suggests that this colonization had been a stepwise process originating in continental Europe. It is the first molecular study on eider duck populations covering their entire European distribution range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号