首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We previously demonstrated that phosphorylation of somatostatin receptor 2A (sst2A) is rapidly increased in transfected cells both by agonist and by the protein kinase C (PKC) activator phorbol myristate acetate (PMA). Here, we investigate whether PKC-mediated receptor phosphorylation is involved in the homologous or heterologous regulation of endogenous sst2 receptors in AR42J pancreatic acinar cells upon stimulation by agonist or by cholecystokinin (CCK) or bombesin (BBS). Somatostatin, PMA, CCK, and BBS all increased sst2A receptor phosphorylation 5- to 10-fold within minutes. Somatostatin binding also caused rapid internalization of the ligand-receptor complex, and PMA, CCK, and BBS all stimulated this internalization further. Additionally, sst2 receptor-mediated inhibition of adenylyl cyclase was desensitized by all treatments. Somatostatin, as well as peptidic (SMS201-995) and nonpeptidic (L-779,976) sst2 receptor agonists increased the EC(50) for somatostatin inhibition 20-fold. In contrast, pretreatment with BBS, CCK, or PMA caused a modest 2-fold increase in the EC(50) for cyclase inhibition. Whereas the PKC inhibitor GF109203X abolished sst2A receptor phosphorylation by CCK, BBS, and PMA, it did not alter the effect of somatostatin, demonstrating that these reactions were catalyzed by different kinases. Consistent with a functional role for PKC-mediated receptor phosphorylation, GF109203X prevented PMA stimulation of sst2 receptor internalization. Surprisingly, however, GF109203X did not inhibit BBS and CCK stimulation of sst2A receptor endocytosis. These results demonstrate that homologous and heterologous hormones induce sst2A receptor phosphorylation by PKC-independent and -dependent mechanisms, respectively, and produce distinct effects on receptor signaling and internalization. In addition, the heterologous hormones also modulate sst2 receptor internalization by a novel mechanism that is independent of receptor phosphorylation.  相似文献   

2.
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms.  相似文献   

3.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

4.
Barker BL  Benovic JL 《Biochemistry》2011,50(32):6933-6941
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization.  相似文献   

5.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

6.
G-protein-coupled receptor kinases (GRKs) are involved in the regulation of many G-protein-coupled receptors. As opposed to the other GRKs, such as rhodopsin kinase (GRK1) or beta-adrenergic receptor kinase (beta ARK, GRK2), no receptor substrate for GRK4 has been so far identified. Here we show that GRK4 is expressed in cerebellar Purkinje cells, where it regulates mGlu(1) metabotropic glutamate receptors, as indicated by the following: 1) When coexpressed in heterologous cells (HEK293), mGlu(1) receptor signaling was desensitized by GRK4 in an agonist-dependent manner (homologous desensitization). 2) In transfected HEK293 and in cultured Purkinje cells, the exposure to glutamate agonists induced internalization of the receptor and redistribution of GRK4. There was a substantial colocalization of the receptor and kinase both under basal condition and after internalization. 3) Kinase activity was necessary for desensitizing mGlu(1a) receptor and agonist-dependent phosphorylation of this receptor was also documented. 4) Antisense treatment of cultured Purkinje cells, which significantly reduced the levels of GRK4 expression, induced a marked modification of the mGlu(1)-mediated functional response, consistent with an impaired receptor desensitization. The critical role for GRK4 in regulating mGlu(1) receptors implicates a major involvement of this kinase in the physiology of Purkinje cell and in motor learning.  相似文献   

7.
Prostacyclin (PGI(2)), the major product of cyclooxygenase in macrovascular endothelium, mediates its biological effects through its cell surface G protein-coupled receptor, the IP. PKC-mediated phosphorylation of human (h) IP is a critical determinant of agonist-induced desensitization (Smyth, E. M., Hong Li, W., and FitzGerald, G. A. (1998) J. Biol. Chem. 273, 23258-23266). The regulatory events that follow desensitization are unclear. We have examined agonist-induced sequestration of hIP. Human IP, tagged at the N terminus with hemagglutinin (HA) and fused at the C terminus to the green fluorescent protein (GFP), was coupled to increased cAMP (EC(50) = 0.39 +/- 0.09 nm) and inositol phosphate (EC(50) = 86. 6 +/- 18.3 nm) generation when overexpressed in HEK 293 cells. Iloprost-induced sequestration of HAhIP-GFP, followed in real time by confocal microscopy, was partially colocalized to clathrin-coated vesicles. Iloprost induced a time- and concentration-dependent loss of cell surface HA, indicating receptor internalization, which was prevented by inhibitors of clathrin-mediated trafficking and partially reduced by cotransfection of cells with a dynamin dominant negative mutant. Sequestration (EC(50) = 27.6 +/- 5.7 nm) was evident at those concentrations of iloprost that induce PKC-dependent desensitization. Neither the PKC inhibitor GF109203X nor mutation of Ser-328, the site for PKC phosphorylation, altered receptor sequestration indicating that, unlike desensitization, internalization is PKC-independent. Deletion of the C terminus prevented iloprost-induced internalization, demonstrating the critical nature of this region for sequestration. Internalization was unaltered by cotransfection of cells with G protein-coupled receptor kinases (GRK)-2, -3, -5, -6, arrestin-2, or an arrestin-2 dominant negative mutant, indicating that GRKs and arrestins do not play a role in hIP trafficking. The hIP is sequestered in response to agonist activation via a PKC-independent pathway that is distinct from desensitization. Trafficking is dependent on determinants located in the C terminus, is GRK/arrestin-independent, and proceeds in part via a dynamin-dependent clathrin-coated vesicular endocytotic pathway although other dynamin-independent pathways may also be involved.  相似文献   

8.
Receptor desensitization by G-protein receptor kinases (GRK) and arrestins is likely to be an important component underlying the development of tolerance to opioid drugs. Reconstitution of this process in Xenopus oocytes revealed distinct differences in the kinetics of GRK and arrestin regulation of the closely related opioid receptors mu (MOR), delta (DOR), and kappa (KOR). We demonstrated that under identical conditions, GRK and arrestin-dependent desensitization of MOR proceeds dramatically slower than that of DOR. Furthermore, GRK3 phosphorylation sites required for opioid receptor desensitization also greatly differ. The determinants for DOR and KOR desensitization reside in the carboxyl-terminal tail, whereas MOR depends on Thr-180 in the second intracellular loop. Although this later finding might indicate an inefficient phosphorylation of MOR Thr-180, increasing the amount of arrestin expressed greatly increased the rate of MOR desensitization to a rate comparable with that of DOR. Similarly, coexpression of a constitutively active arrestin 2(R169E) with MOR and DOR desensitized both receptors in an agonist-dependent, GRK-independent manner at rates that were indistinguishable. Together, these data suggest that it is the activation of arrestin, rather than its binding, that is the rate-limiting step in MOR desensitization. In addition, mutation of Thr-161 in DOR, homologous to MOR Thr-180, significantly inhibited the faster desensitization of DOR. These results suggest that DOR desensitization involves phosphorylation of both the carboxyl-terminal tail and the second intracellular loop that together leads to a more efficient activation of arrestin and thus faster desensitization.  相似文献   

9.
The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.  相似文献   

10.
D(3) dopamine receptor (D(3)R) is expressed mainly in parts of the brain that control the emotional behaviors. It is believed that the improper regulation of D(3)R is involved in the etiology of schizophrenia. Desensitization of D(3)R is weakly associated with G protein-coupled receptor kinase (GRK)/beta-arrestin-directed internalization. This suggests that there might be an alternative pathway that regulates D(3)R signaling. This report shows that D(3)R undergoes robust protein kinase C (PKC)-dependent sequestration that is accompanied by receptor phosphorylation and the desensitization of signaling. PKC-dependent D(3)R sequestration, which was enhanced by PKC-beta or -delta, was dynamin dependent but independent of GRK, beta-arrestin, or caveolin 1. Site-directed mutagenesis of all possible phosphorylation sites within the intracellular loops of D(3)R identified serine residues at positions 229 and 257 as the critical amino acids responsible for phorbol-12-myristate-13-acetate (PMA)-induced D(3)R phosphorylation, sequestration, and desensitization. In addition, the LxxY endocytosis motif, which is located between residues 252 and 255, was found to play accommodating roles for PMA-induced D(3)R sequestration. A continuous interaction with the actin-binding protein 280 (filamin A), which was previously known to interact with D(3)R, is required for PMA-induced D(3)R sequestration. In conclusion, the PKC-dependent but GRK-/beta-arrestin-independent phosphorylation of D(3)R is the main pathway responsible for the sequestration and desensitization of D(3)R. Filamin A is essential for both the efficient signaling and sequestration of D(3)R.  相似文献   

11.
Opioid receptors mediate multiple biological functions through their interaction with endogenous opioid peptides as well as opioid alkaloids including morphine and etorphine. Previously we have reported that the ability of distinct opioid agonists to differentially regulate mu-opioid receptor (mu OR) responsiveness is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the receptor (1). In the present study, we further examined the role of GRK and beta-arrestin in agonist-specific regulation of the delta-opioid receptor (delta OR). While both etorphine and morphine effectively activate the delta OR, only etorphine triggers robust delta OR phosphorylation followed by plasma membrane translocation of beta-arrestin and receptor internalization. In contrast, morphine is unable to either elicit delta OR phosphorylation or stimulate beta-arrestin translocation, correlating with its inability to cause delta OR internalization. Unlike for the mu OR, overexpression of GRK2 results in neither the enhancement of delta OR sequestration nor the rescue of delta OR-mediated beta-arrestin translocation. Therefore, our findings not only point to the existence of marked differences in the ability of different opioid agonists to promote delta OR phosphorylation by GRK and binding to beta-arrestin, but also demonstrate differences in the regulation of two opioid receptor subtypes. These observations may have important implications for our understanding of the distinct ability of various opioids in inducing opioid tolerance and addiction.  相似文献   

12.
Expression levels of the chemokine receptor, CC chemokine receptor 5 (CCR5), at the cell surface determine cell susceptibility to HIV entry and infection. Cellular activation by CCR5 itself, but also by unrelated receptors leads to cross-phosphorylation and cross-internalization of CCR5. This study addresses the underlying molecular mechanisms of homologous and heterologous CCR5 regulation. As shown by bioluminescence resonance energy transfer experiments, CCR5 formed constitutive homo- as well as heterooligomeric complexes together with C5aR but not with the unrelated AT(1a)R in living cells. Stimulation with CCL5 of RBL cells, which co-expressed CCR5 together with an N-terminally truncated CCR5-DeltaNT mutant, resulted in both protein kinase C (PKC)- and G protein-coupled receptor (GPCR) kinase (GRK)-mediated cross-phosphorylation of the mutant unligated receptor, as determined by phosphosite-specific monoclonal antibody. Similarly, both PKC and GRK cross-phosphorylated CCR5 in a heterologous manner after C5a stimulation of RBL-CCR5/C5aR cells, whereas AT(1a)R stimulation resulted only in classical PKC-mediated CCR5 phosphorylation. Co-expression of CCR5-DeltaNT together with a phosphorylation-deficient CCR5 mutant that neither binds beta-arrestin nor undergoes internalization partially restored the CCL5-induced association of beta-arrestin with the homo-oligomeric receptor complex and augmented cellular uptake of (125)I-CCL5. Co-expression of C5aR, but not of AT(1a)R, promoted CCR5 co-internalization upon agonist stimulation by a mechanism independent of CCR5 phosphorylation. Co-internalization of phosphorylated CCR5 was also observed in C5a-stimulated macrophages. Finally, co-expression of a constitutively internalized C5aR-US28(CT) mutant led to intracellular accumulation of CCR5 in the absence of ligand stimulation. These results show that GRKs and beta-arrestin are involved in heterologous receptor regulation by cross-phosphorylating and co-internalizing unligated receptors within homo- or hetero-oligomeric protein complexes.  相似文献   

13.
The structural basis of phosphorylation and its putative role in internalization were investigated in the human dopamine transporter (hDAT). Activation of protein kinase C (PKC) was achieved either directly by treatment with 4-alpha-phorbol 12-myristate 13-acetate (PMA) or by activating the Galpha(q)-coupled human substance P receptor (hNK-1) co-expressed with hDAT in HEK293 cells and in N2A neuroblastoma cells. In both cell lines, activation of the hNK-1 receptor by substance P reduced the V(max) for [(3)H]dopamine uptake to the same degree as did PMA ( approximately 50 and approximately 20% in HEK293 and N2A cells, respectively). In HEK293 cells, the reduction in transport capacity could be accounted for by internalization of the transporter, as assessed by cell surface biotinylation experiments, and by fluorescence microscopy using enhanced green fluorescent protein-tagged hDAT. In HEK293 cells, hNK-1 receptor activation, as well as direct PKC activation by PMA, was accompanied by a marked increase in transporter phosphorylation. However, truncation of the first 22 N-terminal residues almost abolished detectable phosphorylation without affecting the SP- or PMA-induced reduction in transport capacity and internalization. In this background truncation construct, systematic mutation of all the phosphorylation consensus serines and threonines in hDAT, alone and in various combinations, did also not alter the effect of hNK-1 receptor activation or PMA treatment in either HEK293 or N2A cells. Mutation of a dileucine and of two tyrosine-based motifs in hDAT was similarly without effect. We conclude that the major phosphorylation sites in hDAT are within the distal N terminus, which contains several serines. Moreover, the present data strongly suggest that neither this phosphorylation, nor the phosphorylation of any other sites within hDAT, is required for either receptor-mediated or direct PKC-mediated internalization of the hDAT.  相似文献   

14.
G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5fold (P〈0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ5 opioid receptor internalization by approximately 40% (P〈0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.  相似文献   

15.
G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding uncouple G protein-coupled receptors (GPCRs) from their respective G proteins and initiates the process of receptor internalization. In the case of the beta(2)-adrenergic receptor and lysophosphatidic acid receptor, these processes can lead to ERK activation. Here we identify a novel mechanism whereby the activity of GRK2 is regulated by feedback inhibition. GRK2 is demonstrated to be a phosphoprotein in cells. Mass spectrometry and mutational analysis localize the site of phosphorylation on GRK2 to a carboxyl-terminal serine residue (Ser(670)). Phosphorylation at Ser(670) impairs the ability of GRK2 to phosphorylate both soluble and membrane-incorporated receptor substrates and dramatically attenuates Gbetagamma-mediated activation of this enzyme. Ser(670) is located in a peptide sequence that conforms to an ERK consensus phosphorylation sequence, and in vitro, in the presence of heparin, ERK1 phosphorylates GRK2. Inhibition of ERK activity in HEK293 cells potentiates GRK2 activity, whereas, conversely, ERK activation inhibits GRK2 activity. The discovery that ERK phosphorylates and inactivates GRK2 suggests that ERK participates in a feedback regulatory loop. By negatively regulating GRK-mediated receptor phosphorylation, beta-arrestin-mediated processes such as Src recruitment and clathrin-mediated internalization, which are required for GPCR-mediated ERK activation, are inhibited, thus dampening further ERK activation.  相似文献   

16.
Agonist-induced phosphorylation of beta-adrenergic receptors (beta ARs) by G protein-coupled receptor kinases (GRKs) results in their desensitization followed by internalization. Whether protein kinase A (PKA)-mediated phosphorylation of beta ARs, particularly the beta 1AR subtype, can also trigger internalization is currently not known. To test this, we cloned the mouse wild type beta 1AR (WT beta 1AR) and created 3 mutants lacking, respectively: the putative PKA phosphorylation sites (PKA-beta 1AR), the putative GRK phosphorylation sites (GRK-beta 1AR), and both sets of phosphorylation sites (PKA-/GRK-beta 1AR). Following agonist stimulation, both PKA-beta 1AR and GRK-beta 1AR mutants showed comparable increases in phosphorylation and desensitization. Saturating concentrations of agonist induced only 50% internalization of either mutant compared with wild type, suggesting that both PKA and GRK phosphorylation of the receptor contributed to receptor sequestration in an additive manner. Moreover, in contrast to the WT beta 1AR and PKA-beta 1AR, sequestration of the GRK-beta 1AR and PKA-/GRK-beta 1AR was independent of beta-arrestin recruitment. Importantly, clathrin inhibitors abolished agonist-dependent internalization for both the WT beta 1AR and PKA-beta 1AR, whereas caveolae inhibitors prevented internalization only of the GRK-beta 1AR mutant. Taken together, these data demonstrate that: 1) PKA-mediated phosphorylation can trigger agonist-induced internalization of the beta 1AR and 2) the pathway selected for beta 1AR internalization is primarily determined by the kinase that phosphorylates the receptor, i.e. PKA-mediated phosphorylation directs internalization via a caveolae pathway, whereas GRK-mediated phosphorylation directs it through clathrin-coated pits.  相似文献   

17.
G-protein-coupled receptor kinases (GRKs) are important regulators of G-protein-coupled receptor function. Two members of this family L, GRK2 and GRK5 L, have been shown to be substrates for protein kinase C (PKC). Whereas PKC-mediated phosphorylation results in inhibition of GRK5, it increases the activity of GRK2 toward its substrates probably through increased affinity for receptor-containing membranes. We show here that this increase in activity may be caused by relieving a tonic inhibition of GRK2 by calmodulin. In vitro, GRK2 was preferentially phosphorylated by PKC isoforms alpha, gamma, and delta. Two-dimensional peptide mapping of PKCalpha-phosphorylated GRK2 showed a single site of phosphorylation, which was identified as serine 29 by HPLC-MS. A S29A mutant of GRK2 was not phosphorylated by PKC in vitro and showed no phorbol ester-stimulated phosphorylation when transfected into human embryonic kidney (HEK)293 cells. Serine 29 is located in the calmodulin-binding region of GRK2, and binding of calmodulin to GRK2 results in inhibition of kinase activity. This inhibition was almost completely abolished in vitro when GRK2 was phosphorylated by PKC. These data suggest that calmodulin may be an inhibitor of GRK2 whose effects can be abolished with PKC-mediated phosphorylation of GRK2.  相似文献   

18.
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.  相似文献   

19.
To determine the sites in the mu-opioid receptor (MOR) critical for agonist-dependent desensitization, we constructed and coexpressed MORs lacking potential phosphorylation sites along with G-protein activated inwardly rectifying potassium channels composed of K(ir)3.1 and K(ir)3.4 subunits in Xenopus oocytes. Activation of MOR by the stable enkephalin analogue, [d-Ala(2),MePhe(4),Glyol(5)]enkephalin, led to homologous MOR desensitization in oocytes coexpressing both G-protein-coupled receptor kinase 3 (GRK3) and beta-arrestin 2 (arr3). Coexpression with either GRK3 or arr3 individually did not significantly enhance desensitization of responses evoked by wild type MOR activation. Mutation of serine or threonine residues to alanines in the putative third cytoplasmic loop and truncation of the C-terminal tail did not block GRK/arr3-mediated desensitization of MOR. Instead, alanine substitution of a single threonine in the second cytoplasmic loop to produce MOR(T180A) was sufficient to block homologous desensitization. The insensitivity of MOR(T180A) might have resulted either from a block of arrestin activation or arrestin binding to MOR. To distinguish between these alternatives, we expressed a dominant positive arrestin, arr2(R169E), that desensitizes G protein-coupled receptors in an agonist-dependent but phosphorylation-independent manner. arr2(R169E) produced robust desensitization of MOR and MOR(T180A) in the absence of GRK3 coexpression. These results demonstrate that the T180A mutation probably blocks GRK3- and arr3-mediated desensitization of MOR by preventing a critical agonist-dependent receptor phosphorylation and suggest a novel GRK3 site of regulation not yet described for other G-protein-coupled receptors.  相似文献   

20.
Despite important roles in myocardial hypertrophy and benign prostatic hyperplasia, little is known about acute effects of agonist stimulation on alpha(1a)-adrenergic receptor (alpha(1a)AR) signaling and function. Regulatory mechanisms are likely complex since 12 distinct human alpha(1a)AR carboxyl-terminal splice variants have been isolated. After determining the predominance of the alpha(1a-1)AR isoform in human heart and prostate, we stably expressed an epitope-tagged alpha(1a-1)AR cDNA in rat-1 fibroblasts and subsequently examined regulation of signaling, phosphorylation, and internalization of the receptor. Human alpha(1a)AR-mediated inositol phosphate signaling is acutely desensitized in response to both agonist and phorbol 12-myristate 13-acetate (PMA) exposure. Concurrent with desensitization, alpha(1a)ARs in (32)P(i)-labeled cells are rapidly phosphorylated in response to both NE and PMA stimulation. Despite the ability of PKC to desensitize alpha(1a)ARs when directly activated with PMA, inhibitors of PKC have no effect on agonist-mediated desensitization. In contrast, involvement of GRK kinases is suggested by the ability of GRK2 to desensitize alpha(1a)ARs. Internalization of cell surface alpha(1a)ARs also occurs in response to agonist stimulation (but not PKC activation), but is initiated more slowly than receptor desensitization. Significantly, deletion of the alpha(1a)AR carboxyl terminus has no effect on receptor internalization or either agonist-induced or GRK-mediated receptor desensitization. Because mechanisms underlying acute agonist-mediated regulation of human alpha(1a)ARs are primarily independent of the carboxyl terminus, they may be common to all functional alpha(1a)AR isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号