首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.  相似文献   

2.
Summary The rates of total protein synthesis, polyribosome formation and 70S ribosome accumulation were measured following a nutritional shift-up ofEscherichia coli K-12. Changes in ribosome content and distribution during the shift-up were measured by examining the total cellular content of free and polysome-associated ribosomes using a sensitive double isotope labeling method. The kinetics of ribosomal subunit formation and the biosynthesis of subunit protein and RNA species were also defined. The results indicated that a pre-shift population of ribosomal subunits was utilized for the immediate post shift increase in both total and ribosomal-specific protein synthesis. An assembly time for new subunits of about 3 min was observed. The formation of certain ribosomal proteins during the shift suggested that new subunit assembly was limited by the rate of synthesis of particular ribosomal proteins during this growth transition.  相似文献   

3.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

4.
5.
6.
Studies of ribosome structure in thermophilic archaebacteria may provide valuable information on (i) the mechanisms involved in the stabilization of nucleic acid-protein complexes at high temperatures and (ii) the degree of evolutionary conservation of the ribosomal components in the primary kingdoms of cell descent. In this work we investigate certain aspects of RNA/protein interaction within the large ribosomal subunits of the extremely thermophilic archaebacterium Sulfolobus solfataricus. The ribosomal proteins involved in the early reactions leading to in vitro particle assembly have been identified; it is shown that they can interact with the RNA in a temperature-independent fashion, forming a thermally stable "core" particle that can subsequently be converted into complete 50 S ribosomes. Among the protein components of the core particle, those capable of independently binding to 23 and 5 S RNA species have also been identified. Finally, we show that the early assembly proteins of Sulfolobus large ribosomal subunits are able to interact cooperatively with 23 S RNAs from other archaebacteria or from eubacteria, thereby suggesting that RNA/protein recognition sites are largely conserved within prokaryotic ribosomes. By contrast, no specific binding of the archaebacterial proteins to eukaryotic RNA could be demonstrated.  相似文献   

7.
8.
Culver GM 《Biopolymers》2003,68(2):234-249
Ribosomes are large macromolecular complexes responsible for cellular protein synthesis. The smallest known cytoplasmic ribosome is found in prokaryotic cells; these ribosomes are about 2.5 MDa and contain more than 4000 nucleotides of RNA and greater than 50 proteins. These components are distributed into two asymmetric subunits. Recent advances in structural studies of ribosomes and ribosomal subunits have revealed intimate details of the interactions within fully assembled particles. In contrast, many details of how these massive ribonucleoprotein complexes assemble remain elusive. The goal of this review is to discuss some crucial aspects of 30S ribosomal subunit assembly.  相似文献   

9.
The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures.  相似文献   

10.
Active regulator of SIRT1 (AROS) binds and upregulates SIRT1, an NAD+-dependent deacetylase. In addition, AROS binds RPS19, a structural ribosomal protein, which also functions in ribosome biogenesis and is implicated in multiple disease states. The significance of AROS in relation to ribosome biogenesis and function is unknown. Using human cells, we now show that AROS localizes to (i) the nucleolus and (ii) cytoplasmic ribosomes. Co-localization with nucleolar proteins was verified by confocal immunofluorescence of endogenous protein and confirmed by AROS depletion using RNAi. AROS association with cytoplasmic ribosomes was analysed by sucrose density fractionation and immunoprecipitation, revealing that AROS selectively associates with 40S ribosomal subunits and also with polysomes. RNAi-mediated depletion of AROS leads to deficient ribosome biogenesis with aberrant precursor ribosomal RNA processing, reduced 40S subunit ribosomal RNA and 40S ribosomal proteins (including RPS19). Together, this results in a reduction in 40S subunits and translating polysomes, correlating with reduced overall cellular protein synthesis. Interestingly, knockdown of AROS also results in a functionally significant increase in eIF2α phosphorylation. Overall, our results identify AROS as a factor with a role in both ribosome biogenesis and ribosomal function.  相似文献   

11.
The ribosome is a highly dynamic ribonucleoprotein machine. During assembly and during translation the ribosomal RNAs must routinely be prevented from falling into kinetic folding traps. Stable occupation of these trapped states may be prevented by proteins with RNA chaperone activity. Here, ribosomal proteins from the large (50S) ribosome subunit of Escherichia coli were tested for RNA chaperone activity in an in vitro trans splicing assay. Nearly a third of the 34 large ribosomal subunit proteins displayed RNA chaperone activity. We discuss a possible role of this function during ribosome assembly and during translation.  相似文献   

12.
Thermally shocked cells of Staphylococcus aureus rapidly synthesized ribonucleic acid (RNA) during the early stages of recovery. During this period, protein synthesis was not observed and occurred only after RNA had reached a maximum level. Even in the absence of coordinated protein synthesis, a large portion of the RNA appeared in newly synthesized ribosomes. Although the 30S subunit was specifically destroyed by the heating process, both ribosomal particles were reassembled during recovery. The addition of chloramphenicol did not inhibit the formation of the ribosomal subunits, nor was the presence of immature chloramphenicol particles detected. Extended recovery with highly prelabeled cells showed that the original ribosomal proteins present before heating are conserved and recycled. Furthermore, the data indicate that the 50S subunit is turned over and used as a source of protein for new ribosome assembly. Kinetic studies of the assembly process by pulse labeling have not revealed the presence of the normally reported precursor particles. Rather, the data suggest that assembly may occur, in this system, in a manner similar to that reported for in vitro assembly of Escherichia coli subunits.  相似文献   

13.
Summary Chloroplast ribosomal protein L-18 is made in the cytoplasm as a precursor, imported into the chloroplast, and processed to the mature form in two steps. We report here that the intermediate produced following the first processing step associates specifically with a ribosomal complex migrating with the chloroplast ribosome large subunit peak in sucrose gradients, and is then processed into mature L-18. This processing event is slowed down in mutant cells deficient in synthesis of non-ribosomal proteins in the chloroplast. Thus the second processing step of L-18 occurs during ribosome assembly, depends on one or more nonribosomal proteins made in the chloroplast, and may be required for the maturation of the 50 S ribosome subunit. The mature L-18 protein shows extensive sequence homology at its amino-terminus to Escherichia coli ribosomal protein L27, which is located at the interface, between 30 S and 50 S subunits and is involved in the formation of the peptidyl-tRNA binding site.  相似文献   

14.
Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S-5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].  相似文献   

15.
Summary Experiments were undertaken to characterize the cytoplasmic ribosomal proteins (r-proteins) in Chlamydomonas reinhardtii and to compare immunologically several cytoplasmic r-proteins with those of chloroplast ribosomes of this alga, Escherichia coli, and yeast. The large and small subunits of the C. reinhardtii cytoplasmic ribosomes were shown to contain, respectively, 48 and 45 r-proteins, with apparent molecular weights of 12,000–59,000. No cross-reactivity was seen between antisera made against cytoplasmic r-proteins of Chlamydomonas and chloroplast r-proteins, except in one case where an antiserum made against a large subunit r-protein cross-reacted with an r-protein of the small subunit of the chloroplast ribosome. Antisera made against one out of five small subunit r-proteins and three large subunit r-proteins recognized r-proteins from the yeast large subunit. Each of the yeast r-proteins has been previously identified as an rRNA binding protein. The antiserum to one large subunit r-protein cross-reacted with specific large subunit r-proteins from yeast and E. coli.  相似文献   

16.
Proteins were isolated from 80-S preribosomal particles and ribosomal subunits of murine L5178Y cells after short and longer periods of incubation with tritiated amino acids. The labeling patterns of ribosomal proteins were compared by two-dimensional polyacrylamide gel electrophoresis. The analysis of isotopic ratios in individual protein spots showed marked differences in the relative kinetics of protein appearance within nucleolar peribosomes and cytoplasmic subunits. Among the about 60 distinct proteins characterized in 80-S preribosomes, 9 ribosomal proteins appeared to incorporate radioactive amino acids more rapidly. These proteins become labeled gradually in the cytoplasmic ribosomal subunits. It was found that one non-ribosomal protein associated with 80-S preribosomes takes up label far more quickly than other preribosomal polypeptides. It is suggested that this set of proteins could associate early with newly transcribed pre-rRNA, more rapidly than others after their synthesis on polyribosomes, and could therefore play a role in the regulation of ribosome synthesis. In isolated 60-S and 40-S ribosomal subunits, we detected five proteins from the large subunit and four proteins from the small subunit which incorporate tritiated amino acids more quickly than the remainder. These proteins were shown to be absent or very faintly labeled in 80-S preribosomal particles, and would associate with ribosomal particles at later stages of the maturation process.  相似文献   

17.
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.  相似文献   

18.
H Kalthoff  D Richter 《Biochemistry》1979,18(19):4144-4147
Tritium-labeled acidic proteins from the large ribosomal subunit of Artermia salina or Escherichia coli were microinjected into the cytoplasm of stage IV/V oocytes from Xenopus laevis. eL12 from the large ribosomal subunit of A. salina but not L7/L12 or L7/L12--L10 from E. coli is specifically incorporated into 60S ribosomal subunits of oocytes. This incorporation is not significantly inhibited by actinomycin D. Incorporation of eL12 into the 60S subunits occurs in enucleated oocytes, suggesting that active ribosomal ribonucleic acid synthesis and ribosome assembly as well are not prerequired for this reaction. Apparently the incorporation proceeds via an exchange reaction between a free cytoplasmic pool of eL12 and ribosomal eL12.  相似文献   

19.
The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a systematic RNA interference (RNAi) approach to analyze the contribution of 464 candidate factors to ribosomal subunit biogenesis in human cells. The screen was based on visual readouts, using inducible, fluorescent ribosomal proteins as reporters. By performing computer-based image analysis utilizing supervised machine-learning techniques, we obtained evidence for a functional link of 153 human proteins to ribosome synthesis. Our data show that core features of ribosome assembly are conserved from yeast to human, but differences exist for instance with respect to 60S subunit export. Unexpectedly, our RNAi screen uncovered a requirement for the export receptor Exportin 5 (Exp5) in nuclear export of 60S subunits in human cells. We show that Exp5, like the known 60S exportin Crm1, binds to pre-60S particles in a RanGTP-dependent manner. Interference with either Exp5 or Crm1 function blocks 60S export in both human cells and frog oocytes, whereas 40S export is compromised only upon inhibition of Crm1. Thus, 60S subunit export is dependent on at least two RanGTP-binding exportins in vertebrate cells.  相似文献   

20.
In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号