首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Abstract. This study investigates the effects of human disturbance and environmental factors on the distribution of alien plant species on the Georgia Sea Islands (GSI), USA. We sampled the absolute cover of native and alien plant species on two tourist islands (St. Simons Island and Jekyll Island) and on two protected National Wildlife Refuge Islands (Blackbeard Island and Wassaw Island). On each island, vegetation composition and environmental variables (soil properties and salt spray) were measured in two habitats that differed substantially in their degree of environmental stress, the more exposed primary dune and the more sheltered and inland maritime forest. Sites were further stratified within each habitat into areas that had different levels of human disturbance. Many alien species were present on all islands and the absolute cover of alien species was not significantly different among islands even though they varied substantially in their degree of accessibility and overall land use. Alien plant cover was appreciably greater in severely disturbed sites than in less disturbed sites on all islands and within both habitats. However, the difference between disturbance categories was much less pronounced in the primary dunes where human disturbance agents do not mitigate the harsh environmental conditions of this habitat (salt spray and saline soils). Alien plant abundance on the GSI is evidently more dependent upon the availability of disturbed ground than the degree of accessibility or overall island development. It appears that human disturbance increases alien cover in general, but in environments where the stress levels are not mitigated, human disturbance does little to foster alien invasions.  相似文献   

2.
Non-native plant species richness may be either negatively or positively correlated with native species due to differences in resource availability, propagule pressure or the scale of vegetation sampling. We investigated the relationships between these factors and both native and non-native plant species at 12 mainland and island forested sites in southeastern Ontario, Canada. In general, the presence of non-native species was limited: <20% of all species at a site were non-native and non-native species cover was <4% m−2 at 11 of the 12 sites. Non-native species were always positively correlated with native species, regardless of spatial scale and whether islands were sampled. Additionally, islands had a greater abundance of non-native species. Non-native species richness across mainland sites was significantly negatively correlated with mean shape index, a measure of the ratio of forest edge to area, and positively correlated with the mean distance to the nearest forest patch. Other factors associated with disturbance and propagule pressure in northeastern North America forests, including human land use, white-tailed deer populations, understorey light, and soil nitrogen, did not explain non-native richness nor cover better than the null models. Our results suggest that management strategies for controlling non-native plant invasions should aim to reduce the propagule pressure associated with human activities, and maximize the connectivity of forest habitats to benefit more poorly dispersed native species.  相似文献   

3.
Habitat fragmentation and invasion by exotic species are regarded as major threats to the biodiversity of many ecosystems. We surveyed the plant communities of two types of remnant sagebrush-steppe fragments from nearby areas on the Snake River Plain of southeastern Idaho, USA. One type resulted from land use (conversion to dryland agriculture; hereafter AG Islands) and the other from geomorphic processes (Holocene volcanism; hereafter kipukas). We assessed two predictions for the variation in native plant species richness of these fragments, using structural equation models (SEM). First, we predicted that the species richness of native plants would follow the MacArthur–Wilson (M–W) hypothesis of island biogeography, as often is expected for the communities of habitat fragments. Second, we predicted a negative relationship between native and exotic plants, as would be expected if exotic plants are decreasing the diversity of native plants. Finally, we assessed whether exotic species were more strongly associated with the fragments embedded in the agricultural landscape, as would be expected if agriculture had facilitated the introduction and naturalization of non-native species, and whether the communities of the two types of fragments were distinct. Species richness of native plants was not strongly correlated with M–W characteristics for either the AG Islands or the **kipukas. The AG Islands had more species and higher cover of exotics than the kipukas, and exotic plants were good predictors of native plant species richness. Our results support the hypothesis that proximity to agriculture can increase the diversity and abundance of exotic plants in native habitat. In combination with other information, the results also suggest that agriculture and exotic species have caused loss of native diversity and reorganization of the sagebrush-steppe plant community.  相似文献   

4.
Effects of urban land cover on the local species pool in Britain   总被引:12,自引:0,他引:12  
Regression models were used to quantify the relationship between the amount of urban land and composition of local species pools. There was no evidence that urban land cover increases the richness of plant species, based on a survey of 785 2-km squares of which 157 had > 10% urban land cover. However, the number of alien plants is significantly higher in urban areas. Complete urbanization approximately doubles the proportion of alien species, and the proportion of aliens is twice as high in southern Britain as in the north. The flora of urban tetrads consists of ubiquitous native species and introduced species characteristic of waste ground, but woodland species are poorly represented. At the tetrad scale. enhanced dispersal by man is not the main factor for maintaining the urban flora; availability of urban habitats and high levels of disturbance are more important. The planned housing expansion to greenfield sites in Britain will increase the proportion of alien species, yet the majority of native species should persist in urban areas if existing woodland is preserved.  相似文献   

5.
Invasion by alien organisms is a common worldwide phenomenon, and many alien species invade native communities. Invasion by alien species is especially likely to occur on oceanic islands. To determine how alien species become integrated into island plant–insect associations, we analyzed the structure of tree–beetle associations using host plant records for larval feeding by wood-feeding beetles (Coleoptera: Cerambycidae) on the oceanic Ogasawara Islands in the northwestern Pacific Ocean. The host plant records comprised 109 associations among 28 tree (including 8 alien) and 26 cerambycid (including 5 alien) species. Of these associations, 41.3% involved at least one alien species. Most native cerambycid species feed on host trees that have recently died. Alien trees were used by as many native cerambycid species (but by significantly more alien cerambycid species) as were native trees. Native cerambycid species used as many alien tree species (but significantly more native tree species) as did alien cerambycids. Thus, we observed many types of interactions among native and alien species. A network analysis revealed a significant nested structure in tree–cerambycid associations regardless of whether alien species were excluded from the analysis. The original nested associations on the Ogasawara Islands may thus have accepted alien species.  相似文献   

6.
Life-history Habitat Matching in Invading Non-native Plant Species   总被引:1,自引:0,他引:1  
We briefly reviewed the literature on habitat matching in invading non-native plant species. Then we hypothesized that the richness and cover of native annual and perennial plant species integrate complex local information of vegetation and soils that would help to predict invasion success by similarly adapted non-native plant species. We tested these ‘life-history habitat matching’ relationships in 603 0.1-ha plots, including 294 plots in Colorado, which were relatively high for the cover of native perennial plant species, and for 309 0.1-ha plots in southern Utah, which were relatively high in the cover of native annual plant species. We found strong positive relationships between the richness and foliar cover for both native and non-native species, whether they were annual or perennial species (0.34 > r 2 < 0.53; P < 0.0001). We also found significant positive relationships between the cover of native annual species at a site and the richness (r 2 = 0.13; P < 0.0001) and the foliar cover (r 2 = 0.06; P < 0.0001) of non-native annual species. The proportion of non-native annual species in the flora of a plot also increased significantly with the foliar cover of native annual species. Conversely, the richness and cover of non-native annual species were significantly negatively associated with the foliar cover of native perennial species (r 2 = 0.05 and 0.06, respectively; P < 0.0001). The cover of non-native annual or perennial species was not significantly correlated with soil texture variables, %N, or %C. We conclude that there may be a high degree of life-history habitat matching by non-native annual species in these study sites. Information on native annual and perennial species richness and cover may help characterize the complex soils, climate, and disturbance environment in which similarly adapted non-native plant species establish and gain foliar cover.  相似文献   

7.
Biological invasions have become one of the main drivers of habitat degradation and a leading cause of biodiversity loss in island ecosystems worldwide. The spread of invasive species poses a particular environmental threat on the islands of the Mediterranean Basin, which are hot spots of biodiversity and contain rare habitats and endemic species, especially on small islands, which are highly vulnerable to biodiversity loss. Following a recent survey, in this paper we aim to provide an overview of the present-day non-native vascular flora of small Mediterranean islands based on a sample of 37 islands located in the middle of the Mediterranean Sea, off the coast of Italy. By comparing the current data with those gathered during a previous survey conducted in the same study area, we also aim to highlight the main changes that have occurred in non-native plant species diversity, establishment and distribution in recent years and to present a first general overview of the most prominent plant taxa in the island’s introduced flora, focusing on those most responsible for these changes and those that pose the greatest environmental threats. We recorded 203 non-native plant species, 147 of which have established on at least one of the islands investigated. Overall, we detected a sharp increase in the number of species, in their levels of establishment and in the extent of their distribution within the study area in recent years. This may be explained by the intensification of research on plant invasions, as well as to new introduction, escape, establishment and invasion events on the islands in recent decades. The most remarkable plants detected include acacias and succulents, two groups that appear to be emerging very rapidly and to be posing new threats to the conservation of the islands’ natural environment, especially the genus Carpobrotus, whose spread into natural habitats containing rare and endemic taxa is seriously threatening biodiversity on both a local and global scale. On the whole, our results show that the plant invasion phenomenon in the study area has in recent years intensified considerably. As this process seems likely to continue, we should expect more establishment events in the future and the further spread of species that are already present. This is of particular conservation concern on the islands investigated in this survey, which are rich in endemisms, but have been facing deep socio-economic and environmental transformations in these last decades as a consequence of the abandonment of traditional management practices and the development of tourism. Our study thus confirms that plant invasions on Mediterranean islands are a serious environmental problem that threatens biodiversity conservation not only in the Mediterranean biogeographic region, but also on the global scale, and highlights the need to further increase efforts aimed at preventing, controlling or mitigating the effects of plant invasions in island ecosystems.  相似文献   

8.

Aim

Studies investigating the determinants of plant invasions rarely examine multiple factors and often only focus on the role played by native plant species richness. By contrast, we explored how vegetation structure, landscape features and climate shape non-native plant invasions across New Zealand in mānuka and kānuka shrublands.

Location

New Zealand.

Method

We based our analysis on 247 permanent 20 × 20-m plots distributed across New Zealand surveyed between 2009 and 2014. We calculated native plant species richness and cumulative cover at ground, understorey and canopy tiers. We examined non-native species richness and mean species ground cover in relation to vegetation structure (native richness and cumulative cover), landscape features (proportion of adjacent anthropogenic land cover, distance to nearest road or river) and climate. We used generalized additive models (GAM) to assess which variables had greatest importance in determining non-native richness and mean ground cover and whether these variables had a similar effect on native species in the ground tier.

Results

A positive relationship between native and non-native plant species richness was not due to their similar responses to the variables examined in this study. Higher native canopy richness resulted in lower non-native richness and mean ground cover, whereas higher native ground richness was associated with higher native canopy richness. Non-native richness and mean ground cover increased with the proportion of adjacent anthropogenic land cover, whereas for native richness and mean ground cover, this relationship was negative. Non-native richness increased in drier areas, while native richness was more influenced by temperature.

Main Conclusions

Adjacent anthropogenic land cover seems to not only facilitate non-native species arrival by being a source of propagules but also aids their establishment as a result of fragmentation. Our results highlight the importance of examining both cover and richness in different vegetation tiers to better understand non-native plant invasions.  相似文献   

9.
Positive interactions among native plant species are common in alpine habitats, particularly those where one species (nurse plant) generates microclimatic conditions that are more benign than the surrounding environment, facilitating the establishment of other species. Nonetheless, these microclimatic conditions could facilitate the establishment of non-native species as well. A conspicuous component of the alien alpine flora of the central Chilean Andes is the perennial herb Taraxacum officinale agg. (dandelion). In contrast to other alien species that are restricted to human-disturbed sites, T. officinale is frequently observed growing within native plant communities dominated by cushion plants. In this study we evaluated if T. officinale is positively associated with the cushion plant Azorella monantha. Via seedling survival experiments and gas-exchange measurements we also assessed the patterns of facilitation between cushions and dandelions, and explore the potential mechanisms of invasion by dandelions. T. officinale grows spatially positively associated with cushions of A. monantha. Survival of seedlings, as well as their net-photosynthetic rates and stomatal conductance, were higher within cushions than in open areas away from them, suggesting that the microclimatic modifications generated by this native cushion facilitates the establishment and performance of a non-native invasive species. Our results, as well as other recent studies, highlight the role of native communities in facilitating rather than constraining non-native plant invasions, particularly in stressful habitats such as alpine environments.  相似文献   

10.
《Acta Oecologica》2006,29(1):114-122
This study examines the alien flora of a representative zone of the continental northeast region of the Iberian Peninsula, in the Huesca province. Its aims were to determine the biological and ecological factors responsible for the invasive behaviour of the alien species, along with factors related to the environment and land use that could increase the vulnerability of the different habitats towards invasion. Results were then compared with previous observations made in the coastal areas closest to this inland region. Relationships between the invasive nature and the biological and ecological characteristics of the species were evaluated by logistic analysis. General linear model analysis was used to correlate environmental factors with the capacity of the region's habitats to accept these invaders. Perhaps the most noticeable feature was the high number of alien plants growing as crop weeds in the continental study area. The factors found to be most related to the invasive behaviour of the alien species were biological type, route of introduction and the disturbance degree of the habitat. Human population density, average yearly rainfall and temperature, and to a lesser extent, land use were the environmental factors most significantly associated with the number of alien species present. Our findings indicate that the invasibility of continental areas of the NE Iberian Peninsula by alien plants is notably lower compared to the closest coastal zones, the degree of naturalisation of alien species within the native flora also being lower. Differences between the coast and interior in terms of the origins and introduction routes of the alien plants were also evident. Environments showing the greatest capacity to accommodate alien plant species were coastal areas, where the land is mostly given over to urban use and there is a predominance of fluvial and riparian ecosystems.  相似文献   

11.
We applied a multifaceted approach, in terms of taxonomic, phylogenetic and functional diversity, to study at fine scale how three plant communities occurring in a Mediterranean dune have been affected by the encroachment of alien species. We sampled 81 sites in a Site of Community Importance in Central Italy. Past and present land use/cover data have been derived using GIS and remote sensing tools. Information on plants phylogenesis and functional traits has been gathered from several databases. Ecological variables have been collected. GLMs in conjunction with an Information Based approach were used to model species composition, richness and phylogenetic diversity. Multivariate analysis has been used to study functional diversity. The results outlined how total species richness is related to recent land transformations and to a set of environmental factors. The analyses of functional and phylogenetic diversity support the idea that alien species significantly affect the functional and phylogenetic characteristics of the native plant communities. Habitat filtering seems to be predominant in not-invaded plots, whereas limiting similarity/niche differentiation is predominant in driving community assembly of invaded communities. The attained scenario depicts the spread of a reduced group of alien species phylogenetically and functionally well-differentiated, able to reduce the abundance of native species, not to exclude them though. Ultimately, the multifaceted approach assisted in understanding the community assembly of dune vegetation, and to discern the relative impact of alien species on native plant communities. Such approach represents a crucial step to achieve an efficient management of dune habitats, as useful tool to monitor and to effectively protect their biodiversity and functioning.  相似文献   

12.
Aim Mediterranean coastal sand dunes are characterized by both very stressful environmental conditions and intense human pressure. This work aims to separate the relative contributions of environmental and human factors in determining the presence/abundance of native and alien plant species in such an extreme environment at a regional scale. Location 250 km of the Italian Tyrrhenian coast (Region Lazio). Methods We analysed alien and native plant richness and fitted generalized additive models in a multimodel‐inference framework with comprehensive randomizations to evaluate the relative contribution of environmental and human correlates in explaining the observed patterns. Results Native and alien richness are positively correlated, but different variables influence their spatial patterns. For natives, human population density is the most important factor and is negatively related to richness. Numbers of natives are unexpectedly lower in areas with a high proportion of natural land cover (probably attributable to local farming practices) and, to a lesser degree, affected by the movement of the coastline. On the other hand, alien species richness is strongly related to climatic factors, and more aliens are found in sectors with high rainfall. Secondarily, alien introductions appear to be related to recent urban sprawl and associated gardening. Main conclusions Well‐adapted native species in a fragile equilibrium with their natural environment are extremely sensitive to human‐driven modifications. On the contrary, for more generalist alien species, the availability of limited resources plays a predominant role.  相似文献   

13.
Oceanic islands are renowned for their unique flora and high levels of endemism. Native island plants, however, are imperilled by non-native species that can become invasive by outcompeting natives. The threat of native island assemblages generally increases with isolation and the number of endemics featured, but also with human-associated disturbance and land use. Based on this, the Canary Island native plant systems should be highly threatened by invasives, similar to other oceanic islands globally. However, Canarian native plant systems are only weakly infiltrated and are rarely directly threatened by invasive plants. Further, highly disturbed areas, usually among the first colonized by invasives on islands, are recolonized here by natives. Based on this, we postulate four hypotheses (climatic filter, well-preservation status, human legacy and permanent colonization) for explaining this unusual behaviour of plant systems on the Canary Islands, providing an opportunity to understand the drivers and processes behind invasion into plant communities on islands.  相似文献   

14.
Aim  To quantify the occurrence of processes of homogenization or differentiation in the vascular flora of six oceanic islands.
Location  Six islands in the south-eastern Pacific drawn from the Desventuradas Archipelago, Easter Island and the Juan Fernández Archipelago.
Methods  Using published floristic studies, we determined the floristic composition of each island at two different stages: (1) pre-European colonization and (2) current flora. We compared changes in the number of shared plants and the floristic similarity among islands for each stage.
Results  The number of plant species doubled from 263 in pre-European flora to 531 species currently. Only three native species became extinct, four natives were translocated among the islands and 271 plant species were introduced from outside. The frequency of plant species shared by two or more islands is higher in the post-European floras than prior to European contact, and the level of floristic similarity between islands increased slightly.
Main conclusions  Considering the low naturalization rate of alien plants, the small number of extinctions and the meagre increase in floristic similarity, these islands are undergoing a slow process of floristic homogenization.  相似文献   

15.
In Mediterranean regions, biological invasions pose a major threat to the conservation of native species and the integrity of ecosystems. In addition, changes in land‐cover are a widespread phenomenon in Mediterranean regions, where an increase in urban areas and major changes from agricultural abandonment to shrub encroachment and afforestation are occurring. However, the link between biological invasions and changes in land‐cover has scarcely been analyzed. We conducted a regional survey of the distribution of the two alien prickly‐pear cacti Opuntia maxima and O. stricta in Cap de Creus (Catalonia, Spain) and related patterns of invasion to spatially explicit data on land‐cover/change from 1973 to 1993 to test the hypotheses that the two Opuntia species invade areas that have experienced large land‐cover transformations. We found that Opuntia invasion is particularly high in shrublands and woodlands located near urban areas. O. maxima are over‐represented in the shrublands and O. stricta in the woodlands that were former crops. Crop coverage has dropped by 71% in this 20‐year period. This study highlights the role of past land‐cover in understanding the present distribution of plant invasions.  相似文献   

16.
Aim We sampled riverine macrophyte communities and environmental conditions to compare drivers of alien and native abundance and to provide a general set of environmental correlates of invasion by aquatic macrophytes. Location Streams adjacent to three land‐use types (intensive, agricultural and natural) across a large latitudinal gradient (approximately 27° S–43° S) in Australia. Sites were located near Brisbane (Queensland), Sydney (New South Wales), Canberra (Australian Capital Territory), Melbourne (Victoria) and Hobart (Tasmania). Methods Alien and native aquatic plant species cover, water quality, forest canopy and adjacent land use were measured in three catchment locations (low‐, mid‐ and upper‐catchment) in all cities. Mean richness and cover of native and alien macrophytes were compared in the five cities, three catchment locations, and three land‐use types. Correlation tests examined relationships between alien and native richness at transect, site and city scales. Canonical correspondence analysis (CCA) determined the effects of environment on cover and richness of native and alien plant groups (emergents, floating, forbs/other, graminoids and submerged). Results Variation existed in the aquatic plant community at all scales, but strong patterns emerged with respect to land use and environmental gradients. Alien abundance was more responsive to anthropogenic disturbance (e.g. greater in intensive and agricultural land‐use types, and greater where dissolved nutrients and conductivity were high) than natives, which were unaffected by land‐use type and less responsive overall to environmental gradients. Native and alien richness were uncorrelated at all scales. Main conclusions Natives and aliens of the same life form did not respond similarly to the environment, suggesting inherent differences in their ability to capitalize on anthropogenic disturbance. Our results suggest invasion‐susceptible habitats are those that receive nutrient pollutants and that occur in urban and agricultural areas low in the catchment. Our confidence in these patterns is strengthened by their consistency across a large latitudinal gradient.  相似文献   

17.
We used 71,764 specimens (14,988 alien and 56,776 native) from the herbarium CONC at Universidad de Concepción, Chile to identify alien invasion periods. We assumed that the pattern of accumulation of specimens can be used for tracing back the distribution in time of alien species introductions in the Chilean territory. To assess this we constructed Invasion Curves (IC) of native and alien species and specimens recorded in the complete territory and we adapted this methodology to draw Proportion Curves (PC). Increments in the proportion of alien vs. native species can be interpreted as expansions in population size of alien species, either locally or by invasion of new areas. To visualize surface expansions consistent with changes in PC we arranged four maps broadly coincident with inflexions in PC: before 1900, 1940, 1980 and 2004. Invasion curves from both native and alien species produced a first step of positive and rapid increment followed by an extended, apparently stable phase. The first expansion phase of alien flora (1910–1940) coincides with a first period of strong growth of Chilean agriculture as indicated by increments in wheat and other cereals production. A more recent second maximum showed by PC (approximately between 1980 and 2000) occurs in a period when: (i) wheat surface goes down but (ii) wheat production increases, and (iii) forestry exports increases. These changes are coincident with increased mechanization making possible more wheat production in fewer surfaces. The expansions of alien plant species in Chile are evident on geographical distribution maps. In only one century alien species expanded to nearly all the territory. Both the North and South extremes however, seem to be an exception to this general trend as shown by the gaps on maps.  相似文献   

18.
Many studies have shown that soil disturbance facilitates establishment of invasive, non-native plant species, and a number of mechanisms have been isolated that contribute to the process. To our knowledge no studies have isolated the role of altered soil compaction, a likely correlate of many types of soil disturbance, in facilitating invasion. To address this, we measured the response of seeded non-native and native plant species to four levels of soil compaction in mesocosms placed in an abandoned agricultural field in the Methow Valley, Washington, USA. Soil compaction levels reflected the range of resistance to penetration (0.1–3.0 kg cm−2) measured on disturbed soils throughout the study system prior to the experiment. Percent cover of non-native species, namely Bromus tectorum and Centaurea diffusa, decreased by 34% from the least to the most compacted treatments, whereas percent cover of native species, mostly Pseudoroegneria spicata and Lupinus spp., did not respond to compaction treatments. Experimental results were supported by a survey of soil penetration resistance and percent cover by species in 18 abandoned agricultural fields. Percent cover of B. tectorum was negatively related to soil compaction levels, whereas none of the native species showed any response to soil compaction. These results highlight a potentially important, though overlooked, aspect of soil disturbance that may contribute to subsequent non-native plant establishment.  相似文献   

19.
The aim of this study is to clarify the role of gardening and agriculture in the introduction of alien vascular plants to the western Mediterranean Basin during the last century. The main country in which this study is based is Spain. However, other countries in the Western Mediterranean Basin also form part of it. These are Portugal, France, Italy and Morocco. Three percentages were calculated. Firstly, the percentage of alien flora was calculated. Then, we calculated the percentages of species introduced as either a consequence of gardening or of agriculture. The figures were based on thirty-four floristic studies carried out in the western Mediterranean Basin between 1904 and 2006. A regression model, in which the explanatory variable is time and the dependent variables are the three percentages mentioned above, was drawn up with the data obtained. The results show the existence of positive correlation between time and the percentages of total exotic flora and the species introduced through gardening (R = 0.64 and 0.56, respectively) and the negative correlation between time and the percentage of alien species introduced through agriculture (R = −0.43). During the last century, the roles of agriculture and gardening as sources of the introduction of exotic flora to the western Mediterranean Basin were reversed. However, in the areas where the socio-economic scene is more predominantly agrarian, the role of gardening is still limited.  相似文献   

20.
Abstract. The invasion by non-native plant species of an urban remnant of a species-rich Themeda triandra grassland in southeastern Australia was quantified and related to abiotic influences. Richness and cover of non-native species were highest at the edges of the remnant and declined to relatively uniform levels within the remnant. Native species richness and cover were lowest at the edge adjoining a roadside but then showed little relation to distance from edge. Roadside edge quadrats were floristically distinct from most other quadrats when ordinated by Detrended Correspondence Analysis. Soil phosphorus was significantly higher at the roadside edge but did not vary within the remnant itself. All other abiotic factors measured (NH4, NO3, S, pH and % organic carbon) showed little variation across the remnant. Non-native species richness and cover were strongly correlated with soil phosphorus levels. Native species were negatively correlated with soil phosphorus levels. Canonical Correspondence Analysis identified the perennial non-native grasses of high biomass as species most dependent on high soil nutrient levels. Such species may be resource-limited in undisturbed soils. Three classes of non-native plants have invaded this species-rich grassland: (1) generalist species (> 50 % frequency), mostly therophytes with non-specialized habitat or germination requirements; (2) resource-limited species comprising perennial species of high biomass that are dependent on nutrient increases and/or soil disturbances before they can invade the community and; (3) species of intermediate frequency (1–30 %), of low to high biomass potential, that appear to have non-specialized habitat requirements but are currently limited by seed dispersal, seedling establishment or the current site management. Native species richness and cover are most negatively affected by increases in non-native cover. Declines are largely evident once the non-native cover exceeds 40 %. Widespread, generalist non-native species are numerous in intact sites and will have to be considered a permanent part of the flora of remnant grasslands. Management must aim to minimize increases in cover of any non-native species or the disturbances that favour the establishment of competitive non-native grasses if the native grassland flora is to be conserved in small, fragmented remnants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号