首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular alkaliphilic, thermostable and halotolerent xylanase. The culture conditions for xylanase production were optimized with respect to pH, temperature, NaCl and inexpensive agro waste as substrates. Xylanase yield was enhanced more than four fold in the presence of 1% corn husk and 0.5% peptone or feather hydrolysate at pH 11 and 37°C. Xylanase was purified to 11.8-fold with 8.7% yield by using traditional chromatographic methods whereas the same enzyme purified to 20-fold with 72% yield by using corn husk as ligand. Its molecular mass was estimated to be 24 kDa by SDS–PAGE. The xylanase had maximal activity at pH 11 and 70°C. The enzyme was active over broad range, 0–20% sodium chloride. The enzyme was thermostable retaining 100% of the original activity at 70°C for 3 h. The apparent K m values for oat spelt xylan and brichwood xylan were 4.1 and 4.4 mg/ml respectively. The deduced internal amino acid sequence of PPKS-2 xylanase resembled the sequence of β-1,4-endoxylanase, which is member of glycoside hydrolase family 11.  相似文献   

2.
A xylanase producer, Bacillus pumilus SB-M13, was isolated from soil and identified using various tests based on carbohydrate fermentation preferences and fatty acid analysis. Xylanase gene, isolated using PCR amplification, was partially sequenced and it showed 89–94% sequence similarity to the xylanase genes of other B. pumilus strains. Xylanase with very low level of cellulase was produced on agricultural byproducts. The enzyme has been purified 186-fold by hydrophobic interaction chromatography and biochemically characterized. It has a molecular weight of 24.8 kDa and pI of 9.2. Xylanolytic activity is stable at alkaline pH and highest activity is observed at 60 °C and pH 7.5. Enzyme K m and k cat values were determined as 1.9 mg/mL and 42,600 U/mg, respectively. In aqueous-two-phase system, xylanase always partitioned to the top phase. Basic pH, low PEG concentration, salt addition, and presence of microbial cells enhanced xylanase partitioning. A maximum sevenfold purification, 10-fold concentration and 100% xylanase recovery were obtained, separately, by adjusting system parameters. A fourfold concentrated xylanase was obtained with 70% enzyme recovery only in one step ATPS process without cell harvesting.  相似文献   

3.
Xylanase produced from the isolated bacterial strain Bacillus sp. SV-34S showed a 8.74-fold increase in enzyme activity under optimized submerged fermentation conditions. Cultivation using wheat bran as the carbon source and beef extract and (NH4)H2PO4 as the nitrogen source resulted in productivity of 3,454.01 IU/mL xylanase. Xylanase was purified by 12.94-fold, with a recovery of 13.4 % and a specific activity of 3417.2 IU/mg protein, employing ammonium sulphate fractionation followed by cation-exchange chromatography using CM-Sephadex C-50 column chromatography, with a product of 27 kDa. The purified xylanase showed an optimum temperature and pH of 50 °C and 6.5, respectively although it was active even at pH 11.0. The thermostability study revealed that Bacillus sp. SV-34S was thermotolerant, being stable up to 50 °C; the residual activity at 55 and 60 °C was 96 and 93 %, respectively. The enzyme was stable between pH 6.0 and 8.0, although it retained >100 % activity at pH 8.0 and 9.0, respectively, following pre-incubation for 24 h. Xylanase activity was inhibited by various metal ions added to the assay mixture, with maximum inhibition observed in the presence of HgCl2. The Km and Vmax values of the purified xylanase using birch wood xylan as substrate were 3.7 mg/mL and 133.33 IU/mL, respectively. The isolated bacterial strain produced high levels of extremophilic cellulase-free xylanase. The fact that it can be used in crude form and that it can be produced cheaply with renewable carbon sources make the process economically feasible. The characteristics of the purified enzyme suggest its potential application in industries such as the paper and pulp industry.  相似文献   

4.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

5.
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 °C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 °C and pH 6.5 for A. terricola, and 65 °C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 °C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t 50 of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4–3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and β-xylosidase were detected which might act synergistically with xylanase.  相似文献   

6.
《Process Biochemistry》2010,45(5):617-626
A new keratinolytic enzyme-producing bacterium was isolated from slaughter house polluted water and identified as Bacillus pumilus A1. Medium composition and culture conditions for the keratinases production by B. pumilus A1 were optimized using two statistical methods: Plackett–Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and central composite design used to optimize the concentration of the five significant variables: feathers meal, soy peptone, NaCl, KCl, and KH2PO4. The medium optimization resulted in a 3.4-fold increase in keratinase production (87.73 U/ml) compared to that of the initial medium (25.9 U/ml). The zymography analysis shows the presence of at least five keratinolytic enzymes. The keratinolytic activity of the extracellular proteinases was examined by incubation with non-autoclaved chicken feathers. Complete solubilisation of whole feathers was observed after a 6-h incubation at temperatures ranging from 45 °C to 60 °C. The crude enzyme exhibited maximal activity at 60 °C and pH 8.5 or 55 °C and pH 9.0 using casein or keratin as substrates, respectively.  相似文献   

7.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   

8.
Qu W  Shao W 《Biotechnology letters》2011,33(7):1407-1416
An endoxylanase gene, xynA, was cloned from Bacillus pumilus ARA and expressed in Escherichia coli. The open reading frame of the xynA gene was 687 bp encoding a signal peptide and a mature xylanase with a molecular mass of 23 kDa. The enzyme was categorized as a glycosyl hydrolase family 11 member based on the sequence analysis of the putative catalytic domain. The recombinant XynA (Bpu XynA) was purified to homogeneity by Ni–NTA and ion exchange chromatography on DEAE–Sepharose FF. The enzyme exhibited highest activity at pH 6.6 and 50°C. The purified Bpu XynA was stable for at least 2 h at 45°C, and retained over 50% residual activity after being incubated at 60°C for 1 h. The activity of the xylanase was not significantly affected by metal ions and EDTA. The K m and K cat /K m of Bpu XynA for oat-spelt xylan were 5.53 mg/ml and 10.14 ml/mg s at 50°C and pH 6.6. The main product of hydrolysis by Bpu XynA was xylooligosaccharide. The results revealed that the consumption of grass xylan by B. pumilus ARA depended on the synergistic reactions of Bpu XynA and Bpu arabinosidase, and that a typical GH11 xylanase e.g. Tla XynA had capability to remove the side chain of xylan. The properties Bpu XynA make it promising for application in the production of Bifidobacterium growth-promoting factors and in feed industry.  相似文献   

9.
The optimization of cultural variables resulted in a marked enhancement in the secretion of cellulase-free and alkali-thermostable xylanase (EC 3.2.1.8) by an extreme thermophile Geobacillus thermoleovorans. The enzyme secretion was enhanced when the medium was supplemented with xylan (0.15%) and Tween-80 (0.1% v/v). In wheat bran-tryptone medium, the peak in enzyme production was attained within 42 h in a fermenter as compared to 72 h in shake flasks. Optimization of the culture conditions resulted in a 7.72-fold enhancement in enzyme production. The cellulase-free xylanase was optimally active at pH 8.5 and 80°C, and it was found to be useful in the pre-bleaching process of paper pulps.  相似文献   

10.
The fermentation conditions were optimized for hyper production of xylanase from Bacillus pumilus SV-205. The bacterium secretes high levels (7382.7±1200 IU/mL) of cellulase-free xylanase using wheat bran led to 21.63 fold increase in activity. A combination of yeast extract and peptone stimulated highest xylanase production (2448.0 IU/mL) as compared to other combinations. The most important characteristic of the enzyme is its high pH stability (100%) over a broad pH range of 6-11 for 24h. Thermostability studies revealed that enzyme retained 65% activity after an incubation of 2h at 60°C. The level of production is remarkable as compared to earlier reports.  相似文献   

11.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

12.
We aimed to optimize a nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Xylanase production with lignocellulosic material was optimized in two steps using DeMeo’s fractional factorial design. A 3.4-fold increase in xylanase production (313.3 U/mL) was achieved using the optimized culture medium consisting of (g/L): K2HPO4, 2; MgSO4·7H2O, 0.3; CaCl2·2H2O, 0.01; NaCl, 2; peptone, 5 yeast extract, 4; and wheat bran, 50. B. pumilus B20 produced a high level of xylanase, which may have potential industrial application.  相似文献   

13.
An alkaliphilic, moderately thermophilic and halophilic bacterial isolate capable of producing a high titer of extracellular thermo-alkali-stable, cellulase-free endoxylanase was isolated from the paper mill effluents. It was identified as Bacillus halodurans. The purified xylanase was active from pH 7 to 12 and 30 to 100°C with optimal activity at pH 9.0 and 80°C. It had T1/2 values of 40 and 15 min at 70 and 80°C, respectively. Activity was stimulated by dithiothreitol but strongly inhibited by N-bromosuccinimide. Its action on birchwood xylan and agro-residues liberated xylooligosaccharides of 2–7 degree of polymerization, and thus, the mode of action is similar to endoxylanases of the family 10 glucoside hydrolases.  相似文献   

14.
Fibrolytic enzyme production by Aspergillus japonicus C03 was optimized in a medium containing agro-industrial wastes, supplemented with peptone and yeast extract. A 23 full factorial composite and response surface methodology were used to design the experiments and analysis of results. Tropical forages were hydrolyzed by A. japonicus C03 enzymatic extract in different levels, and they were also tested as enzymatic substrate. Optimal production to xylanase was obtained with soybean bran added to crushed corncob (1:3), 0.01% peptone, and 0.2% yeast extract, initial pH 5.0, at 30 °C under static conditions for 5 days of incubation. Optimal endoglucanase production was obtained with wheat bran added to sugarcane bagasse (3:1), 0.01% peptone, and 0.2% yeast extract, initial pH 4.0, at 30 °C, for 6 days, under static conditions. Addition of nitrogen sources as ammonium salts either inhibited or did not influence xylanase production. This enzymatic extract had a good result on tropical forage hydrolyzes and showed better performance in the Brachiaria genera, due to their low cell wall lignin quantity. These results represent a step forward toward the use of low-cost agricultural residues for the production of valuable enzymes with potential application in animal feed, using fermentation conditions.  相似文献   

15.
An alkaline active xylanase, XynBYG, was purified from an alkaliphilic Bacillus pumilus BYG, which was newly isolated from paper mill effluent. It had an optimum pH of 8.0–9.0, and showed good stability after incubated at pH 9.0 for 120 min. The optimum temperature for the activity was 50°C, and the enzyme retained below 55% of its original activity for 30 min at 55°C. The gene coding for XynBYG consists of 687 bp and encodes 229 amino acids. Similarity analysis indicated that XynBYG belong to family 11 glycosyl hydrolases. Site-directed mutagenesis was performed to replace five sites (Tyr/Ser) to Arg/Glu and the results demonstrated that the optimum temperature of the mutant Y7 (S39R-T146E) increased 5°C and the half-life of inactivation (T1/2) at 60 and 65°C was 1 h and 25 min, respectively. Thus, it provides a potential xylanase that can meet the harsh conditions in the industrial applications.  相似文献   

16.
Bacillus pumilus ASH produced a high level of an extracellular and thermostable xylanase enzyme when grown using solid-state fermentation (SSF). Among a few easily available lignocellulosics tested, wheat bran was found to be the best substrate (5,300 U/g of dry bacterial bran). Maximum xylanase production was achieved in 72 h (5,824 U/g). Higher xylanase activity was obtained when wheat bran was moistened with deionized water (6,378 U/g) at a substrate-to-moisture ratio of 1:2.5 (w/v). The optimum temperature for xylanase production was found to be 37°C. The inoculum level of 15% was found to be the most suitable for maximum xylanase production (7,087 U/g). Addition of peptone stimulated enzyme production followed by yeast extract and mustard oil cake, whereas glucose, xylose and malt extract greatly repressed the enzyme activity. Repression by glucose was concentration-dependent, repressing more than 60% of the maximum xylanase production at a concentration of 10% (w/v). Cultivation in large enamel trays yielded a xylanase titre that was slightly lower to that in flasks. The enzyme activity was slightly lower in SSF than in SmF but the ability of the organism to produce such a high level of xylanase at room temperature and with deionized water without addition of any mineral salts in SSF, could lead to substantial reduction in the overall cost of enzyme production. This is the first report on production of such a high level of xylanase under SSF conditions by bacteria.  相似文献   

17.
Multiple proteases were produced and partially purified from an alkali-thermotolerant novel species of Streptomyces (i.e., Streptomyces gulbargensis DAS 131) after 48 h of growth at 45°C. The enzyme preparation exhibited activity over a broad range of pH (4–12) and temperature (27–55°C). Optimum activity was observed at a pH of 9.0 and a temperature of 45°C. Starch and protease peptone was found to be a good source of carbon and nitrogen to enhance the enzyme activity. Two active zones in the range of 19 to 35 kDa were detected on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

18.
Response surface methodology employing central composite design (CCD) was used to optimize fermentation medium for the production of cellulase-free, alkaline xylanase from Streptomyces violaceoruber under submerged fermentation. The design was employed by selecting wheat bran, peptone, beef extract, incubation time and agitation as model factors. A second-order quadratic model and response surface method showed that the optimum conditions for xylanase production (wheat bran 3.5 % (w/v), peptone 0.8 % (w/v), beef extract 0.8 % (w/v), incubation time 36 h and agitation 250 rpm) results in 3.0-fold improvement in alkaline xylanase production (1500.0 IUml−1) as compared to initial level (500.0 IUml−1) after 36 h of fermentation, whereas its value predicted by the quadratic model was 1347 IUml−1. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.9718, ensuring a satisfactory adjustment of the quadratic model with the experimental data. The economical and cellulase-free nature of xylanase would enhance its applicability in pulp and paper industry.  相似文献   

19.
Abstract

In this study, protease-producing capacity of Bacillus pumilus D3, isolated from hydrocarbon contaminated soil, was evaluated and optimized. Optimum growing conditions for B. pumilus D3 in terms of protease production were determined as 1% optimum inoculum size, 35?°C temperature, 11 pH and 48?h incubation time, respectively. Stability studies indicated that the mentioned protease was stable within the pH range of 7–10.5 and between 30?°C and 40?°C temperatures. Surprisingly, the activity of the enzyme increased in the presence of SDS with concentration up to 5?mM. The protease was concentrated 1.6-fold with ammonium sulfate precipitation and dialysis. At least six protein bands were obtained from dialysate by electrophoresis. Four clear protein bands with caseinolytic activity were detected by zymography. Dialysate was further purified by anion-exchange chromatography and the caseinolytic active fraction showed a single band between 29 and 36?kDa of reducing conditions.  相似文献   

20.
The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40°C for 72 h and 96 h, respectively. Addition of glucose or fructose (≥1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)2HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS–PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60°C and 4.0–4.5, respectively. Both invertases were stable for 1 h at 60°C with half-lives of 10 min at 70°C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters Km and Vmax for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号