首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genetics and evolutionary relationship of PCB-degrading bacteria   总被引:20,自引:0,他引:20  
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.Abbreviations BP biphenyl - bph BP/PCB-degradative gene - 23DHBP 2,3-dihydroxybiphenyl - HPDA 2-hydroxy-6-oxo-6-phenylhexa 2,4-dienoic acid - KF707 P. pseudoalcaligenes strain KF707 - LB400 Pseudomonas sp. strain LB400 - PCB polychlorinated biphenyls - Q1 P. paucimobilis strain Q1tod; toluene catabolic gene  相似文献   

2.
3.
The evolved bphA1 (2049) gene, in which nine amino acids from the Pseudomonas pseudoalcaligenes KF707 BphA1 were changed to those from the Burkholderia xenovorans LB400 BphA1 (M247I, H255Q, V258I, G268A, D303E, -313G, S324T, V325I, and T376N), was expressed in Escherichia coli along with the bphA2A3A4 and bphB genes derived from strain KF707. This recombinant E. coli cells converted biphenyl and several heterocyclic aromatic compounds into the highly hydroxylated products such as biphenyl-2,3,2′,3′-tetraol (from biphenyl), 2-(2,3-dihydroxyphenyl)benzoxazole-4,5-diol (from 2-phenylbenzoxazole), and 2-(2,5-dihydroxyphenyl)benzoxazole-4,5-diol [from 2-(2-hydroxyphenyl)benzoxazole]. The antioxidative activity of these generated compounds was markedly higher than that of the original substrate used.  相似文献   

4.
N Kimura  A Nishi  M Goto    K Furukawa 《Journal of bacteriology》1997,179(12):3936-3943
The biphenyl dioxygenases (BP Dox) of strains Pseudomonas pseudoalcaligenes KF707 and Pseudomonas cepacia LB400 exhibit a distinct difference in substrate ranges of polychlorinated biphenyls (PCB) despite nearly identical amino acid sequences. The range of congeners oxidized by LB400 BP Dox is much wider than that oxidized by KF707 BP Dox. The PCB degradation abilities of these BP Dox were highly dependent on the recognition of the chlorinated rings and the sites of oxygen activation. The KF707 BP Dox recognized primarily the 4'-chlorinated ring (97%) of 2,5,4'-trichlorobiphenyl and introduced molecular oxygen at the 2',3' position. The LB400 BP Dox recognized primarily the 2,5-dichlorinated ring (95%) of the same compound and introduced O2 at the 3,4 position. It was confirmed that the BphA1 subunit (iron-sulfur protein of terminal dioxygenase encoded by bphA1) plays a crucial role in determining the substrate selectivity. We constructed a variety of chimeric bphA1 genes by exchanging four common restriction fragments between the KF707 bphA1 and the LB400 bphA1. Observation of Escherichia coli cells expressing various chimeric BP Dox revealed that a relatively small number of amino acids in the carboxy-terminal half (among 20 different amino acids in total) are involved in the recognition of the chlorinated ring and the sites of dioxygenation and thereby are responsible for the degradation of PCB. The site-directed mutagenesis of Thr-376 (KF707) to Asn-376 (LB400) in KF707 BP Dox resulted in the expansion of the range of biodegradable PCB congeners.  相似文献   

5.
A gene cluster encoding biphenyl- and chlorobiphenyl-degrading enzymes was cloned from a soil pseudomonad into Pseudomonas aeruginosa PAO1161. Chromosomal DNA from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes KF707 was digested with restriction endonuclease XhoI and cloned into the unique XhoI site of broad-host-range plasmid pKF330. Of 8,000 transformants tested, only 1, containing the chimeric plasmid pMFB1, rendered the host cell able to convert biphenyls and chlorobiphenyls to ring meta cleavage compounds via dihydrodiols and dihydroxy compounds. The chimeric plasmid contained a 7.9-kilobase XhoI insert. Subcloning experiments revealed that the genes bphA (encoding biphenyl dioxygenase), bphB (encoding dihydrodiol dehydrogenase), and bphC (encoding 2,3-dihydroxybiphenyl dioxygenase) were coded for by the 7.9-kilobase fragment. The gene order was bphA-bphB-bphC. The hydrolase activity, which converted the intermediate meta cleavage compounds to the final product, chlorobenzoic acids, and was encoded by a putative bphD gene, was missing from the cloned 7.9-kilobase fragment.  相似文献   

6.
Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of biphenyl terminal dioxygenase in Pseudomonas pseudoalcaligenes KF707), bphA3 (the gene encoding ferredoxin in KF707), and bphA4 (the gene encoding ferredoxin reductase in KF707) degraded trichloroethylene much faster than E. coli cells carrying the original toluene dioxygenase genes (todC1C2BA) or the original biphenyl dioxygenase genes (bphA1A2A3A4).  相似文献   

7.
Biphenyl dioxygenase catalyzes the first step in the aerobic degradation of polychlorinated biphenyls (PCBs). The nucleotide and amino acid sequences of the biphenyl dioxygenases from two PCB-degrading strains (Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707) were compared. The sequences were found to be nearly identical, yet these enzymes exhibited dramatically different substrate specificities for PCBs. Site-directed mutagenesis of the LB400 bphA gene resulted in an enzyme combining the broad congener specificity of LB400 with increased activity against several congeners characteristic of KF707. These data strongly suggest that the BphA subunit of biphenyl dioxygenase plays an important role in determining substrate selectivity. Further alteration of this enzyme can be used to develop a greater understanding of the structural basis for congener specificity and to broaden the range of degradable PCB congeners.  相似文献   

8.
Biphenyl dioxygenase (Bph Dox) catalyzes the initial oxygenation of biphenyl and related compounds. Bph Dox is a multicomponent enzyme in which a large subunit (encoded by the bphA1 gene) is significantly responsible for substrate specificity. By using the process of DNA shuffling of bphA1 of Pseudomonas pseudoalcaligenes KF707 and Burkholderia cepacia LB400, a number of evolved Bph Dox enzymes were created. Among them, an Escherichia coli clone expressing chimeric Bph Dox exhibited extremely enhanced benzene-, toluene-, and alkylbenzene-degrading abilities. In this evolved BphA1, four amino acids (H255Q, V258I, G268A, and F277Y) were changed from the KF707 enzyme to those of the LB400 enzyme. Subsequent site-directed mutagenesis allowed us to determine the amino acids responsible for the degradation of monocyclic aromatic hydrocarbons.  相似文献   

9.
Four kinds of polychlorinated biphenyl (PCB)-degrading Rhodococcus sp. (TA421, TA431, HA99, and K37) have been isolated from termite ecosystem and under alkaline condition. The bph gene cluster involved in the degradation of PCB/biphenyl has been analyzed in strain TA421. This gene cluster was highly homologous to bph gene clusters in R. globerulus P6 and Rhodococcus sp. RHA1. In this study, we cloned and analyzed the bph gene cluster essential to PCB/biphenyl degradation from R. rhodochrous K37. The order of the genes and the sequence were different in K37 than in P6, RHA1, and TA421. The bphC8 K37 gene was more homologous to the meta-cleavage enzyme involved in phenanthrene metabolism than bphC genes involved in biphenyl metabolism. Two other Rhodococcus strains (HA99 and TA431) had PCB/biphenyl degradation gene clusters similar to that in K37. These findings suggest that these bph gene clusters evolved separately from the well-known bph gene clusters of PCB/biphenyl degraders.  相似文献   

10.
Tuning biphenyl dioxygenase for extended substrate specificity.   总被引:12,自引:0,他引:12  
Highly substituted polychlorinated biphenyls (PCBs) are known to be very resistant to aerobic biodegradation, particularly the initial attack by biphenyl dioxygenase. Functional evolution of the substrate specificity of biphenyl dioxygenase was demonstrated by DNA shuffling and staggered extension process (StEP) of the bphA gene coding for the large subunit of biphenyl dioxygenase. Several variants with an extended substrate range for PCBs were selected. In contrast to the parental biphenyl dioxygenases from Burkholderia cepacia LB400 and Pseudomonas pseudoalcaligenes KF707, which preferentially recognize either ortho- (LB400) or para- (KF707) substituted PCBs, several variants degraded both congeners to about the same extent. These variants also exhibited superior degradation capabilities toward several tetra- and pentachlorinated PCBs as well as commercial PCB mixtures, such as Aroclor 1242 or Aroclor 1254. Sequence analysis confirmed that most variants contained at least four to six template switches. All desired variants contained the Thr335Ala and Phe336Ile substitutions confirming the importance of this critical region in substrate specificity. These results suggest that the block-exchange nature of gene shuffling between a diverse class of dioxygenases may be the most useful approach for breeding novel dioxygenases for PCB degradation in the desired direction.  相似文献   

11.
  Tn4371 is a 55 kb transposon which encodes enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds into benzoate and 4-chlorobenzo-ate derivatives. We constructed a cosmid library of Tn4371 DNA. The bph genes involved in biphenyl/4-chlorobiphenyl degradation were found to be clustered in the middle of the transposon. Sequencing revealed an organisation of the bph genes similar to that previously found in Pseudomonas sp. KKS102, i.e. the bphEGF genes are located upstream of bphA1A2A3 and bphA4 is separated from bphA1A2A3 by bphBCD. Consensus sequences for σ54-associated RNA polymerase were found upstream of bphA1 and bphEGF. Plasmid RP4::Tn4371 was transferred into a mutant of Alcaligenes eutrophus H16 lacking σ54. In contrast to wild-type H16 exconjugants, the σ54 mutant exconjugants could not grow on biphenyl, indicating the dependence of Tn4371bph gene expression on σ54. The Tn4371-encoded bph pathway was activated when biphenyl and various biphenyl-like compounds were present in the growth medium. Preliminary observations indicate the presence of a region outside the catabolic genes downstream of bphA4 which is involved in mediating at least the basal expression of BphC. Received: 13 May 1996 / Accepted: 16 September 1996  相似文献   

12.
K Furukawa  S Hayashida  K Taira 《Gene》1991,98(1):21-28
A transposon, Tn5-B21, was gene-specifically inserted into the chromosomal biphenyl/polychlorinated biphenyl-catabolic operon (bph operon) of soil bacteria. The cloned bphA, bphB and bphC genes of Pseudomonas pseudoalcaligenes KF707, coding for conversion of biphenyl into a ring meta-cleavage product (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid), carried random insertions of Tn5-B21. The mutagenized bphABC DNA, carried by a suicide plasmid, was introduced back into the parent strain KF707, resulting in the appearance of gene-specific transposon mutants by double crossover homologous recombination: the bphA::Tn5-B21 mutant did not attack 4-chlorobiphenyl, the bphB::Tn5-B21 mutant accumulated dihydrodiol, and the bphC::Tn5-B21 mutant produced dihydroxy compound. Gene-specific transposon mutants of the bph operon were also obtained for some other biphenyl-utilizing strains which possess bph operons nearly identical to that of KF707.  相似文献   

13.
Biphenyl dioxygenase (Bph Dox) is responsible for the initial dioxygenation of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in determination of substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Functional evolution of Bph Dox of Pseudomonas pseudoalcaligenes KF707 was accomplished by random priming recombination of the bphA1 gene, involving two rounds of in vitro recombination and mutation followed by selection for increased activity in vivo. Evolved Bph Dox acquired novel and multifunctional degradation capabilities not only for PCBs but also for dibenzofuran, dibenzo-p-dioxin, dibenzothiophene, and fluorene, the compounds scarcely attacked by the original KF707 Bph Dox. The modes of oxygenation were angular and lateral dioxygenation for dibenzofuran and dibenzo-p-dioxin, sulfoxidation for dibenzothiophene, and mono-oxygenation for fluorene. These enzymes also exhibited enhanced degradation abilities for PCB congeners, retaining 2,3-dioxygenase activity and gaining 3,4-dioxygenase activity, depending on the chlorine substitution of PCB congeners. Further mutation analysis revealed that the amino acid at position 376 in BphA1 is significantly involved in the acquisition of multifunctional oxygenase activities and mode of oxygenation.  相似文献   

14.
A complete bph gene cluster (bphLA‐4) containing 12,186 bp was amplified from Dyella ginsengisoli LA‐4. The bphLA‐4 was composed of bphABCXD, and an additional gene encoding a meta‐fission product hydrolase was located in the bphX region. BphLA‐4 was independently transcribed by the two operons, bphA1A2orf1A3A4BCX0 and bphX1orf2X2X3D, and significantly differed from bphKF707. Both benzoate and catechol induced the expression of both operons. 2‐Hydroxypenta‐2,4‐dienoate was identified as the intermediate of the biphenyl degradation by strain LA‐4. This finding suggested that there existed a novel lower pathway of biphenyl degradation in strain LA‐4. Biotechnol. Bioeng. 2012; 109:609–613. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Rhodococcus jostii RHA1 is a polychlorinated biphenyl degrader. Multi-component biphenyl 2,3-dioxygenase (BphA) genes of RHA1 encode large and small subunits of oxygenase component and ferredoxin and reductase components. They did not express enzyme activity in Escherichia coli. To obtain BphA activity in E. coli, hybrid BphA gene derivatives were constructed by replacing ferredoxin and/or reductase component genes of RHA1 with those of Pseudomonas pseudoalcaligenes KF707. The results obtained indicate a lack of catalytic activity of the RHA1 ferredoxin component gene, bphAc in E. coli. To determine the cause of inability of RHA1 bphAc to express in E. coli, the bphAc gene was introduced into Rosetta (DE3) pLacI, which has extra tRNA genes for rare codons in E. coli. The resulting strain abundantly produced the bphAc product, and showed activity. These results suggest that codon usage bias is involved in inability of RHA1 bphAc to express its catalytic activity in E. coli.  相似文献   

16.
Biphenyl dioxygenase (Bph Dox) catalyzes the initial dioxygenation step in the metabolism of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in the determination of the substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Previously, the substitution of Asn at Thr-376 near the active-site iron in the BphA1 of Pseudomonas pseudoalcaligenes KF707 expanded the oxidation range and altered the regiospecificity of Bph Dox for PCBs. In this study, we replaced Thr-376 with Gly, Ser, Gln, Tyr, Val, Phe, Asp, and Lys and expressed these enzymes in Escherichia coli. Bph Dox mutants of Thr376Asn, Thr376Val, Thr376Phe, and Thr376Lys showed novel degradation activity for dibenzofuran, which is a poor substrate for KF707 Bph Dox. All active Bph Dox mutants showed altered regiospecificity with 2,2′-dichlorobiphenyl and 2,5,4′-trichlorobiphenyl. The Thr376Gly, Thr376Val, Thr376Phe, and Thr376Asp Bph Dox mutants introduced molecular oxygen at the 2,3 position of 2,2′-dichlorobiphenyl, forming 2-chloro-2′,3′-dihydroxybiphenyl with concomitant dechlorination. The Bph Dox mutants of Thr376Gly, Thr376Ser, Thr376Asp, and Thr376Lys attacked 2,5,4′-trichlorobiphenyl via both 2′,3′- and 3,4-dioxygenation activities. In particular, the Thr376Phe Bph Dox mutant exhibited enhanced and expanded degradation activities toward all of the compounds tested. Further site-directed mutation was induced to change the oxidizing character of KF707 Bph Dox to that of the Bph Dox of Burkholderia xenovorans LB400 by the substitution of two amino acids, Ile335Phe and Thr376Asn, near the active-site.Electronic supplementary material Supplementary material is available in the online version of this article at .  相似文献   

17.
bph operons coding for biphenyl-polychlorinated biphenyl degradation in Pseudomonas pseudoalcaligenes KF707 and Pseudomonas putida KF715 and tod operons coding for toluene-benzene metabolism in P. putida F1 are very similar in gene organization as well as size and homology of the corresponding enzymes (G. J. Zylstra and D. T. Gibson, J. Biol. Chem. 264:14940-14946, 1989; K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), despite their discrete substrate ranges for metabolism. The gene components responsible for substrate specificity between the bph and tod operons were investigated. The large subunit of the terminal dioxygenase (encoded by bphA1 and todC1) and the ring meta-cleavage compound hydrolase (bphD and todF) were critical for their discrete metabolic specificities, as shown by the following results. (i) Introduction of todC1C2 (coding for the large and small subunits of the terminal dioxygenase in toluene metabolism) or even only todC1 into biphenyl-utilizing P. pseudoalcaligenes KF707 and P. putida KF715 allowed them to grow on toluene-benzene by coupling with the lower benzoate meta-cleavage pathway. Introduction of the bphD gene (coding for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) into toluene-utilizing P. putida F1 permitted growth on biphenyl. (ii) With various bph and tod mutant strains, it was shown that enzyme components of ferredoxin (encoded by bphA3 and todB), ferredoxin reductase (bphA4 and todA), and dihydrodiol dehydrogenase (bphB and todD) were complementary with one another. (iii) Escherichia coli cells carrying a hybrid gene cluster of todClbphA2A3A4BC (constructed by replacing bphA1 with todC1) converted toluene to a ring meta-cleavage 2-hydroxy-6-oxo-hepta-2,4-dienoic acid, indicating that TodC1 formed a functional multicomponent dioxygenase associated with BphA2 (a small subunit of the terminal dioxygenase in biphenyl metabolism), BphA3, and BphA4.  相似文献   

18.
Tn4371 is a 55 kb transposon which encodes enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds into benzoate and 4-chlorobenzo-ate derivatives. We constructed a cosmid library of Tn4371 DNA. The bph genes involved in biphenyl/4-chlorobiphenyl degradation were found to be clustered in the middle of the transposon. Sequencing revealed an organisation of the bph genes similar to that previously found in Pseudomonas sp. KKS102, i.e. the bphEGF genes are located upstream of bphA1A2A3 and bphA4 is separated from bphA1A2A3 by bphBCD. Consensus sequences for σ54-associated RNA polymerase were found upstream of bphA1 and bphEGF. Plasmid RP4::Tn4371 was transferred into a mutant of Alcaligenes eutrophus H16 lacking σ54. In contrast to wild-type H16 exconjugants, the σ54 mutant exconjugants could not grow on biphenyl, indicating the dependence of Tn4371bph gene expression on σ54. The Tn4371-encoded bph pathway was activated when biphenyl and various biphenyl-like compounds were present in the growth medium. Preliminary observations indicate the presence of a region outside the catabolic genes downstream of bphA4 which is involved in mediating at least the basal expression of BphC.  相似文献   

19.
Pseudomonas sp. strain KKS102 is able to degrade biphenyl and polychlorinated biphenyls via the meta-cleavage pathway. We sequenced the upstream region of the bphA1A2A3BCD (open reading frame 1 [ORF1]) A4 and found four ORFs in this region. As the deduced amino acid sequences of the first, second, and third ORFs are homologous to the meta-cleavage enzymes from Pseudomonas sp. strain CF600 (V. Shingler, J. Powlowski, and U. Marklund, J. Bacteriol. 174:711-724, 1992), these ORFs have been named bphE, bphG, and bphF, respectively. The fourth ORF (ORF4) showed homology with ORF3 from Pseudomonas pseudoalcaligenes KF707 (K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), whose function is unknown. The functions of meta-cleavage enzymes (BphE, BphG, and BphF) were analyzed by using crude extracts of Escherichia coli which expressed the encoding genes. The results showed that bphE, bphG, and bphF encode 2-hydroxypenta-2,4-dienoate hydratase, acetaldehyde dehydrogenase (acylating), and 4-hydroxy-2-oxovalerate aldolase, respectively. The biphenyl and polychlorinated biphenyl degradation pathway of KKS102 is encoded by 12 genes in the order bphEGF (ORF4)A1A2A3BCD (ORF1)A4. The functions of ORF1 and ORF4 are unknown. The features of this bph gene cluster are discussed.  相似文献   

20.
Fluorinated aromatic compounds are significant environmental pollutants, and microorganisms play important roles in their biodegradation. The effect of fluorine substitution on the transformation of fluorobiphenyl in two bacteria was investigated. Pseudomonas pseudoalcaligenes KF707 and Burkholderia xenovorans LB400 used 2,3,4,5,6-pentafluorobiphenyl and 4,4??-difluorobiphenyl as sole sources of carbon and energy. The catabolism of the fluorinated compounds was examined by gas chromatography?Cmass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), and revealed that the bacteria employed the upper pathway of biphenyl catabolism to degrade these xenobiotics. The novel fluorometabolites 3-pentafluorophenyl-cyclohexa-3,5-diene-1,2-diol and 3-pentafluorophenyl-benzene-1,2-diol were detected in the supernatants of biphenyl-grown resting cells incubated with 2,3,4,5,6-pentafluorobiphenyl, most likely as a consequence of the actions of BphA and BphB. 4-Fluorobenzoate was detected in cultures incubated with 4,4??-difluorobiphenyl and 19F NMR analysis of the supernatant from P. pseudoalcaligenes KF707 revealed the presence of additional water-soluble fluorometabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号