首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A majority of ecological studies of roads have usually focused on their deleterious effect, and these preconceptions have hampered a full evaluation of ecological functions of roads. We examined the effect of road disturbance on plant communities by investigating roadside vegetation in the protogenic road ecosystem of the Yellow River Delta (YRD), China. Specifically, we examined the effect of distance from the road verge and road age on the pattern of plant species richness, diversity, and composition at 17 sites. The results revealed that roads retained higher species richness adjacent to the road verge than far away from the road verge (>200 m). Additionally, species richness and diversity of roadside plants significantly decreased as the distance from the road verge increased. Plant species richness and diversity increased with road age in majority of prescribed distances, while species richness at the road verge significantly increased with road age and peaked at a road age of 20 years, after which species richness plateaued. A correspondence analysis illuminated that the roadside vegetation primarily consists of non-halophytic native species. The percentage of halophytes increased with the distance from the road verge and decreased with road age. Additionally, different performances of alien and native species in response to road disturbance were observed. Furthermore, it is worth noting that roadside environments provide survival habitats for some threatened species, such as wild soybean. In the present study, both positive and negative effects of roads on the plant community were observed from road construction to the long-term operational phases.  相似文献   

2.
Plant litter may play an important role in herbaceous plant communities by limiting primary production and influencing plant species richness. However, it is not known how the effect of litter interacts with fertilization. We tested for the role of litter and fertilization in a large-scale experiment to investigate effects on diversity and biomass of plant species, growth forms, native vs. non-native groups, and abiotic ecosystem components (e.g., soil moisture, PAR). We manipulated plant litter (removed vs. left in situ) and nutrient availability (NPK-fertilized vs. unfertilized) for 4 years in 314-m2 plots, replicated six times, in an old-field grassland. While many of our species-level results supported previously published studies and theory, our plant group results generally did not. Specifically, grass species richness and forb biomass was not affected by either fertilization or plant litter. Moreover, plant litter removal significantly increased non-native plant species richness. Relative to native plant species, all of our experimental manipulations significantly increased both the biomass and the species richness of non-native plant species. Thus, this grassland system was sensitive to management treatments through the facilitation of non-native plant species. We coupled biotic and abiotic components within a nonmetric multidimensional scaling (NMS) analysis to investigate treatment effects, which revealed that specific treatments altered ecosystem development. These results suggest that fertilization and plant litter may have larger impacts on plant communities and on ecosystem properties than previously understood, underscoring the need for larger-scale and longer-term experiments.  相似文献   

3.
Anthropogenic modification of habitats may reduce the resources available for native species, leading to population declines and extinction. These same habitats often have the highest richness of non-native species. This pattern may be explained if recently human-modified habitats provide novel resources that are more accessible to non-native species than native species. Using non-native birds in the Iberian Peninsula as a case study, we conduct a large-scale study to investigate whether non-native species are positively associated with human modified habitats, and to investigate whether this positive association may be driven by the presence of resources that are not fully exploited by native species. We do this by comparing the functional diversity and resource use of native and non-native bird communities in a recently human-modified habitat (rice fields) and in more traditional habitats in the Iberian Peninsula. The functional diversity of native bird communities was lower in rice fields, but non-native birds were positively associated with rice fields and plugged this gap. Differences in resource use between native and non-native species allowed non-native species to exploit resources that were plentiful in rice fields, supporting the role of underexploited resources in driving the positive association of non-native birds with rice fields. Our results provide a potential mechanism explaining the positive association of non-native species with anthropogenic habitats, and further work is needed to test if this applies more generally.  相似文献   

4.
Human modification of the landscape, including urbanization and road construction, has facilitated the spread and establishment of non-native plant species. The effects of urbanization and roads are expected to be species-specific due to differences in species habitat requirements. We examined the influence of urbanization and roads on the occurrences of 16 non-native plant species in over 2000 wetlands within the Chicago metropolitan region in northeastern Illinois, USA. We found that species, or groups of species, responded differently to the effects of urbanization, roads, and proximity to conspecific populations. Occurrences of halophyte species were best predicted by road variables; halophytes were more commonly associated with major roads such as interstates and federal highways, road types that are likely to receive greater applications of de-icing salts. Several species were associated with proximity to Chicago. Proximity to Chicago may serve as a proxy for the degree of urbanization; or alternatively, may reflect a pattern of outward dispersal from an initial establishment point in the urban center. All study species were positively associated with distance to the nearest occupied wetland, implying that for each species, wetlands were more likely to be occupied if closer to other occupied sites. Our results support the need for species-specific understanding of responses to urbanization and roads to facilitate management of non-native species.  相似文献   

5.
Non-native species have invaded habitats worldwide, greatly impacting the structure and function of native communities and ecosystems. To better understand mechanisms of invasion impacts and how to restore highly impacted and transformed ecosystems, studies are needed that evaluate invader effects on both biotic communities and structural characteristics. On Santa Cruz Island in Galápagos we compared biotic (plant species richness, diversity, and community composition) and structural (canopy openness, forest height, and leaf litter) characteristics of a relic forest dominated by an endemic and highly threatened tree and a forest dominated by an invasive tree. The forests are located within the historical distribution of the endemic tree, which now occupies only 1% of its original extent. We found that the invaded forest had 42% lower native plant species richness and 17% less plant diversity than the endemic tree dominated forest. Additionally, with the invader there was 36% greater non-native plant species richness, 37% higher non-native plant diversity, and highly dissimilar plant composition when compared to the endemic-dominated forest. Additionally, the invaded forest had a more open and taller tree canopy and greater leaf litter cover than native forest. The presence of the invasive tree and the associated forest structural changes were the primary factors in models that best explained higher non-native diversity in the invaded forest. Our correlational results suggest that an invasive tree has significantly altered plant assemblage and forest structural characteristics in this unique ecosystem. Experiments that remove the invader and evaluate native plant community responses are needed to identify thresholds for practical restoration of this threatened and biologically unique native forest.  相似文献   

6.
Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20) were evenly stratified by elevation (~70 m intervals) along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid–elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for establishment in low and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.  相似文献   

7.
Abstract

Road density has increased in the Canary Islands' forests during the last century, affecting an unknown amount of forested area. We studied road effects on vegetation in the relict laurel forest of Tenerife. We assessed edge effects on plant species richness, plant composition and litter production. Effects of anthropogenic corridors on vegetation differed between paved roads and unpaved trails. Opportunistic species (shade intolerant) dominated road edges, but composition differed among all sites. Multivariate analysis revealed convergence in species composition along the corridor-interior gradient. For trails, both species richness and litter production did not differ significantly between edge and interior. Road edge effects on vegetation were detectable only within the first 10 m towards the interior. This suggests that the main effects of roads and trails on species richness are limited to the immediate edge of the laurel forest. Litter fall along road edges was half that of the interior. However, no significant differences were detected due to the high variability of the data. A buffer of approximately 10 m would result in the reduction of the total area of the remaining undisturbed laurel forest. Based on these results, the building of new paved roads should not be considered. Low human population inflow into the Anaga Rural Park needs to be maintained on a sustainable basis. Forest managers should take these road/trail effects into account when planning new road openings in this ecosystem.  相似文献   

8.
There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity–invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory.  相似文献   

9.
European and Asian earthworms have invaded much of North America with profound impacts to soils, plant communities, and animal populations. However, few studies have assessed local-scale correlates of earthworm distributions, and most invasive earthworm research has occurred in northern forests. Additionally, despite several studies showing facilitative relationships between invasive earthworms and invasive plants, no research has assessed a potential facilitative interaction between earthworms and woody plants encroaching into prairies. We conducted the first assessment of factors influencing local-scale distributions of native and non-native earthworms for the U.S. Great Plains in a tallgrass prairie-woodland mosaic experiencing eastern redcedar (Juniperus virginiana) encroachment. We documented both native and non-native earthworms, including non-native species from Eurasia (Aporrectodea spp.) and South America (Family Ocnerodrilidae). Native and non-native earthworm distributions were strongly correlated, yet local-scale predictors of distribution also differed between the groups. Native earthworms were more likely to occur near roads and in areas with moist soils. Contrary to expectation, we found no evidence that non-native earthworms occurred more frequently in areas with eastern redcedar-encroachment; instead, non-native earthworms were most likely to occur in tallgrass prairie. Our results suggest that, within prairies and woodlands of the Great Plains, native and non-native earthworms occur most frequently near roadways and in locations with moist soil. Because the few approaches for controlling invasive earthworms are only likely to be feasible on a small scale, findings from such local-scale studies are important for directing management to reduce earthworm impacts on biodiversity and ecosystem services.  相似文献   

10.
Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.  相似文献   

11.
Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not been recently disturbed. Another hypothesis that has received little attention is whether the effects of non-native plants on native plants vary among habitats that differ in soil fertility. We documented habitat occurrences of 27 non-native plant species and 377 native plant species encountered in numerous study plots in a broad sample of ecosystems in MS (USA). We then reviewed experimental and regression-based field studies in the scientific literature that specifically examined potential competitive (or facilitative) effects of these non-native species on native species and characterized the habitats in which effects were the greatest. As expected, the non-native species examined here in general were more likely to be associated with severely disturbed habitats than were the native species as a group. In contrast, we found that non-native species with competitive effects on natives were more likely to be associated with undisturbed habitats than with disturbed habitats. When longer term studies involving more resident species were given more weight in the analysis, competitive effects appeared to be the greatest in undisturbed habitats with low soil fertility. These results reinforce the notion that invasion is not synonymous with impact. The environmental conditions that promote invasion may limit competitive effects of invaders on native plant communities following invasion.  相似文献   

12.
We assessed vegetation recovery on access roads removed after well abandonment in an active oil‐producing region of northern Great Plains grasslands. We compared extant vegetation on 58 roads, restored 3–22 years previously, to records of species seeded on each and to adjacent, undisturbed prairie, to evaluate main differences between the restored and adjacent community and to explore patterns in the restored plant community over time. The restored plant community was dominated by low richness of seeded non‐native and native grasses and forbs, whereas adjacent prairie had numerous, abundant native graminoids and shrubs and higher richness of native forbs. Cover of seeded species on roads was double that of colonizing species. Disparity in cover of dominant native grasses between the adjacent community and relatively narrow restored roadway suggests that conditions for germination and survival in roadbeds are poor. This is at least partly due to persistence of seeded species. Differences in restored plant composition over time were best explained by changes in species seeded, from non‐natives to natives, and secondarily by successional shifts from ruderal to perennial non‐seeded species. Of the 30 species seeded at least once on these roads, only 10 were commonly used. The long‐term influence of seeding choices in grassland road restorations implies that improvements in these practices will be critical to reversing ecological impacts of roads.  相似文献   

13.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

14.
Positive interactions among native plant species are common in alpine habitats, particularly those where one species (nurse plant) generates microclimatic conditions that are more benign than the surrounding environment, facilitating the establishment of other species. Nonetheless, these microclimatic conditions could facilitate the establishment of non-native species as well. A conspicuous component of the alien alpine flora of the central Chilean Andes is the perennial herb Taraxacum officinale agg. (dandelion). In contrast to other alien species that are restricted to human-disturbed sites, T. officinale is frequently observed growing within native plant communities dominated by cushion plants. In this study we evaluated if T. officinale is positively associated with the cushion plant Azorella monantha. Via seedling survival experiments and gas-exchange measurements we also assessed the patterns of facilitation between cushions and dandelions, and explore the potential mechanisms of invasion by dandelions. T. officinale grows spatially positively associated with cushions of A. monantha. Survival of seedlings, as well as their net-photosynthetic rates and stomatal conductance, were higher within cushions than in open areas away from them, suggesting that the microclimatic modifications generated by this native cushion facilitates the establishment and performance of a non-native invasive species. Our results, as well as other recent studies, highlight the role of native communities in facilitating rather than constraining non-native plant invasions, particularly in stressful habitats such as alpine environments.  相似文献   

15.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   

16.
Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non‐native species. Previous research on plant species ranges in mountains however seldom included the effects of roads. To study how ranges of native and non‐native species differ between roads and adjacent vegetation, we used a global dataset of plant species composition along mountain roads. We compared average elevation and range width of species, and used generalized linear mixed models (GLMMs) to compile their range optimum and amplitude. We then explored differences between roadside and adjacent plots based on a species’ origin (native vs non‐native) and nitrogen and temperature affinity. Most non‐native species had on average higher elevational ranges and broader amplitudes in roadsides. Higher optima for non‐native species were associated with high nitrogen and temperature affinity. While lowland native species showed patterns comparable to those in non‐native species, highland native species had significantly lower elevational ranges in roadsides compared to the adjacent vegetation. We conclude that roadsides indeed change the elevational ranges of a variety of species. These changes are not limited to the expansion of non‐native species along mountain roads, but also include both upward and downward changes in ranges of native species. Roadsides may thus facilitate upward range shifts, for instance related to climate change, and they could serve as corridors to facilitate migration of alpine species between adjacent high‐elevation areas. We recommend including the effects of mountain roads in species distribution models to fine‐tune the predictions of range changes in a warming climate.  相似文献   

17.
Many hypotheses dealing with the success of invasive plant species concern plant–herbivore interactions. The invasional meltdown and enemy inversion hypotheses suggest that non-native herbivores may indirectly facilitate the invasion of a non-native plant species by either favorably changing environmental conditions or reducing competition from native plant species. Our objective was to determine the role of herbivory by the non-native snail Otala lactea in structuring California grassland communities. We conducted two experiments to examine the feeding preferences of O. lactea for eight representative grassland species. Overall, O. lactea preferred Brassica nigra, a non-native forb, over all other species tested. Field monocultures of B. nigra supported significantly higher snail densities than monocultures of any of the other species tested. O. lactea also preferred B. nigra over all other species tested in controlled laboratory feeding trials. However, based on trait comparisons of each of the eight grassland species, we cannot pinpoint the preference for B. nigra to a basic nutritional requirement on the part of the herbivore or an allocation to defense on the part of the plants. Our study provides evidence for an antagonistic relationship between a non-native herbivore and a non-native plant species in their invasive range. We term this relationship “invasional antagonism”.  相似文献   

18.
Alien plants, although usually rare in mountain habitats, can significantly impact native species diversity. The aim of this study was to analyse patterns of alien plant distribution in the Tatra Mts (Slovakia), focusing primarily on comparison of various transportation routes as a conduit for the spread of alien plants. We collected data on transects along: (i) railways, (ii) paved roads with unlimited access, (iii) tourist routes in mountain valleys (paved and unpaved roads, footpaths) with limited access and (iv) plots in areas surrounding mountain chalets. The majority of alien plants were found in locations at lower elevations and with intensive human activity. Patterns of distribution along the main corridors in the Tatras reflect the intensity and manner of use of each transportation route. Paved roads with unlimited access and railways are used most frequently and host the greatest number of alien species. Our observations show that the mode of access of these routes is more important than the road surface. Roads with limited vehicular access, be it unpaved and paved, are very similar in their alien species richness, while paved roads with limited and unlimited access significantly differ. Footpaths that cannot be accessed by vehicles are almost free of alien plants, even though they are found in the widest elevation range and often parallel to roads in the same valley. Other factors significantly negatively affiliated with alien species richness were elevation, cover of the tree and moss layer and moisture, and positively affiliated with the amount of nutrients.  相似文献   

19.
Prevention is regarded as a cost-effective management action to avoid unwanted impacts of non-native species. However, targeted prevention can be difficult if little is known about the traits of successfully invading non-native species or habitat characteristics that make native vegetation more resistant to invasion. Here, we surveyed mountain roads in seven regions worldwide, to investigate whether different species traits are beneficial during primary invasion (i.e. spread of non-native species along roadside dispersal corridors) and secondary invasion (i.e. percolation from roadsides into natural adjacent vegetation), and to determine if particular habitat characteristics increase biotic resistance to invasion. We found primary invasion up mountain roads tends to be by longer lived, non-ruderal species without seed dispersal traits. For secondary invasion, we demonstrate that both traits of the non-native species and attributes of the receiving natural vegetation contribute to the extent of invasion. Non-native species that invade natural adjacent vegetation tend to be shade and moisture tolerant. Furthermore, non-native species invasion was greater when the receiving vegetation was similarly rich in native species. Our results show how mountain roads define which non-native species are successful; first by favouring certain traits in mountain roadsides (the key dispersal pathway to the top), and secondly by requiring a different set of traits when species invade the natural adjacent vegetation. While patterns in species traits were observed at a global level, regional abiotic and biotic variables largely generated region-specific levels of response, suggesting that management should be regionally driven.  相似文献   

20.
Roads are one of the most widespread human‐caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road‐adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号