首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The independent evolution of sex chromosomes in many eukaryotic species raises questions about the evolutionary forces that drive their formation. Recent advances in our understanding of these genomic structures in mammals in parallel with alternate models such as the monotremes, fish, dioecious plants, and fungi support the idea of a remarkable convergence in structure to form large, non-recombining regions with discrete evolutionary strata. The discovery that evolutionary events similar to those that have transpired in humans have also occurred during the formation of sex chromosomes in organisms as divergent as the plant Silene, the fungus Cryptococcus and the fish medaka highlights the importance of future studies in these systems. Such investigation will broaden our knowledge of the evolution and plasticity of these ubiquitous genomic features underlying sexual dimorphism and reproduction.  相似文献   

2.
When comparing the transporters of three completely sequenced eukaryotic genomes--Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens--transporter types can be distinguished according to phylogeny, substrate spectrum, transport mechanism and cell specificity. The known amino acid transporters belong to five different superfamilies. Two preferentially Na(+)-coupled transporter superfamilies are not represented in the yeast and Arabidopsis genomes, whereas the other three groups, which often function as H(+)-coupled systems, have members in all investigated genomes. Additional superfamilies exist for organellar transport, including mitochondrial and plastidic carriers. When used in combination with phylogenetic analyses, functional comparison might aid our prediction of physiological functions for related but uncharacterized open reading frames.  相似文献   

3.
It is generally assumed that mitochondrial genomes are uniparentally transmitted, homoplasmic and nonrecombining. However, these assumptions draw largely from early studies on animal mitochondrial DNA (mtDNA). In this review, we show that plants, animals and fungi are all characterized by episodes of biparental inheritance, recombination among genetically distinct partners, and selfish elements within the mitochondrial genome, but that the extent of these phenomena may vary substantially across taxa. We argue that occasional biparental mitochondrial transmission may allow organisms to achieve the best of both worlds by facilitating mutational clearance but continuing to restrict the spread of selfish genetic elements. We also show that methodological biases and disproportionately allocated study effort are likely to have influenced current estimates of the extent of biparental inheritance, heteroplasmy and recombination in mitochondrial genomes from different taxa. Despite these complications, there do seem to be discernible similarities and differences in transmission dynamics and likelihood of recombination of mtDNA in plant, animal and fungal taxa that should provide an excellent opportunity for comparative investigation of the evolution of mitochondrial genome dynamics.  相似文献   

4.
Glucosylceramides are membrane lipids in most eukaryotic organisms and in a few bacteria. The physiological functions of these glycolipids have only been documented in mammalian cells, whereas very little information is available of their roles in plants, fungi, and bacteria. In an attempt to establish appropriate experimental systems to study glucosylceramide functions in these organisms, we performed a systematic functional analysis of a glycosyltransferase gene family with members of animal, plant, fungal, and bacterial origin. Deletion of such putative glycosyltransferase genes in Candida albicans and Pichia pastoris resulted in the complete loss of glucosylceramides. When the corresponding knock-out strains were used as host cells for homologous or heterologous expression of candidate glycosyltransferase genes, five novel glucosylceramide synthase (UDP-glucose:ceramide glucosyltransferase) genes were identified from the plant Gossypium arboreum (cotton), the nematode Caenorhabditis elegans, and the fungi Magnaporthe grisea, Candida albicans, and P. pastoris. The glycosyltransferase gene expressions led to the biosynthesis of different molecular species of glucosylceramides that contained either C18 or very long chain fatty acids. The latter are usually channeled exclusively into inositol-containing sphingolipids known from Saccharomyces cerevisiae and other yeasts. Implications for the biosynthesis, transport, and function of sphingolipids will be discussed.  相似文献   

5.
Adaptive response to oxidative stress: Bacteria, fungi, plants and animals   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) are continuously produced and eliminated by living organisms normally maintaining ROS at certain steady-state levels. Under some circumstances, the balance between ROS generation and elimination is disturbed leading to enhanced ROS level called "oxidative stress". The primary goal of this review is to characterize two principal mechanisms of protection against oxidative stress - regulation of membrane permeability and antioxidant potential. The ancillary goals of this work are to describe up to date knowledge on the regulation of the previously mentioned mechanisms and to identify areas of prospective research and emerging directions in investigation of adaptation to oxidative stress. The ubiquity for challenges leading to oxidative stress development calls for identification of common mechanisms. They are cysteine residues and [Fe,S]-clusters of specific regulatory proteins. The latter mechanism is realized via SoxR bacterial protein, whereas the former mechanism is involved in operation of bacterial OxyR regulon, yeast H(2)O(2)-stimulon, plant NPR1/TGA and Rap2.4a systems, and animal Keap1/Nrf2, NF-κB and AP-1, and others. Although hundreds of studies have been carried out in the field with different taxa, the comparative analysis of adaptive response is quite incomplete and therefore, this work aims to cover a plethora of phylogenetic groups to delineate common mechanisms. In addition, this article raises some questions to be elucidated and points out future directions of this research. The comparative approach is used to shed light on fundamental principles and mechanisms of regulation of antioxidant systems. The idea is to provide starting points from which we can develop novel tools and hypothesis to facilitate meaningful investigations in the physiology and biochemistry of organismic response to oxidative stress.  相似文献   

6.
7.
Only few orthologs of animal apoptosis regulators have been found in plants. Recently, the ectopic expression of mammalian inhibitor of apoptosis proteins (IAPs) has been shown to affect plant programmed cell death. Here, we identified two novel proteins homologous to Arabidopsis thaliana IAP-like protein (AtILP) 1 and 2 by applying an improved motif searching method. Furthermore, homologs of AtILP1 were found to occur as a novel gene family in other organisms such as fungi and animals including Homo sapiens (HsILP1). Like baculovirus IAP repeats (BIRs) in IAPs, ILPs contain two highly conserved BIR-like domains (BLDs) with a putative C2HC-type zinc finger. Phylogenetic analyses indicated that ILPs are putative paralogs of IAPs. Homology modeling revealed that the three-dimensional structure of BLD in HsILP1 is similar to that of BIR. Transient expression of HsILP1 resulted in inhibition of etoposide-induced apoptosis in HEK293 and HeLaS3 cells. These findings suggest that ILPs are conserved in a wide range of eukaryotes including plants, and that their functions are closely related to those of IAPs.  相似文献   

8.
Summary -Tubulin subunits from trout (S. gairdneri) sperm tails, sea urchin (S. purpuratus) cilia, protistan alga (C. elongatum) flagella and rose (Paul's Scarlet) cytoplasm have been characterized by limited proteolytic cleavage with the enzymeStaphylococcus aureus protease and electrophoresis of the digestion products on SDS-PAGE. The resulting patterns corresponded to either of two major types representative of animal and non-animal -tubulins, respectively. A total of 28 -tubulins have now been characterized by this method. They are classified in this paper according to the type of cleavage pattern generated by the enzymeS. aureus protease. The implications of these results for metazoan evolution are discussed.  相似文献   

9.
In an attempt to improve our abilities to predict peroxisomal proteins, we have combined machine-learning techniques for analyzing peroxisomal targeting signals (PTS1) with domain-based cross-species comparisons between eight eukaryotic genomes. Our results indicate that this combined approach has a significantly higher specificity than earlier attempts to predict peroxisomal localization, without a loss in sensitivity. This allowed us to predict 430 peroxisomal proteins that almost completely lack a localization annotation. These proteins can be grouped into 29 families covering most of the known steps in all known peroxisomal pathways. In general, plants have the highest number of predicted peroxisomal proteins, and fungi the smallest number.  相似文献   

10.
The heat shock protein (Hsp) sequences, because of their ubiquity and high degree of conservation, provide useful models for phylogenetic analysis. In this paper I have carried out a global alignment of all available sequences (a total of 31) for the 90-kD heat shock protein (Hsp90) family. The minimum amino acid identity that is seen between presently known Hsp90 homologs is about 40% over the entire length, indicating that it is a highly conserved protein. Based on the alignment, a number of signature sequences that either are distinctive of the Hsp90 family or that distinguish between the cytosolic and the endoplasmic reticular forms of Hsp90 have been identified. Detailed phylogenetic analyses based on Hsp90 sequences reported here strongly indicate that the cytosolic and the endoplasmic reticulum (ER) resident forms of Hsp90 constitute paralogous gene families which arose by a gene duplication event that took place very early in the evolution of eukaryotic cells. A minimum of two additional gene duplication events, which took place at a later time, are required to explain the presence of two different forms of Hsp90 that are found in fungi and vertebrate species. In a consensus neighbor-joining bootstrap tree based on Hsp90 sequences, plants and animals species grouped together 989 times of 1,000 (a highly significant score), indicating a closer relationship between them as compared to fungi. A closer affiliation of plant and animal species was also observed in the maximum-parsimony tree, although the relationship was not significantly supported by this method. A survey of the recent literature on this subject indicates that depending on the protein sequence and the methods of phylogenetic analysis, the animal species are indicated as closer relatives to either plants or fungi with significant statistical support for both topologies. Thus the relationship among the animal, plant, and fungi kingdoms remains an unresolved issue at the present time.   相似文献   

11.
The past decade has seen the determination of complete mitochondrial genome sequences from a taxonomically diverse set of organisms. These data have allowed an unprecedented understanding of the evolution of the mitochondrial genome in terms of gene content and order, as well as genome size and structure. In addition, phylogenetic reconstructions based on mitochondrial DNA (mtDNA)-encoded protein sequences have firmly established the identities of protistan relatives of the animal, fungal and plant lineages. Analysis of the mtDNAs of these protists has provided insight into the structure of the mitochondrial genome at the origin of these three, mainly multicellular, eukaryotic groups. Further research into mtDNAs of taxa ancestral and intermediate to currently characterized organisms will help to refine pathways and modes of mtDNA evolution, as well as provide valuable phylogenetic characters to assist in unraveling the deep branching order of all eukaryotes.  相似文献   

12.
13.
Vertebrates originated in the lower Cambrian. Their diversification and morphological innovations have been attributed to large-scale gene or genome duplications at the origin of the group. These duplications are predicted to have occurred in two rounds, the "2R" hypothesis, or they may have occurred in one genome duplication plus many segmental duplications, although these hypotheses are disputed. Under such models, most genes that are duplicated in all vertebrates should have originated during the same period. Previous work has shown that indeed duplications started after the speciation between vertebrates and the closest invertebrate, amphioxus, but have not set a clear ending. Consideration of chordate phylogeny immediately shows the key position of cartilaginous vertebrates (Chondrichthyes) to answer this question. Did gene duplications occur as frequently during the 45 Myr between the cartilaginous/bony vertebrate split and the fish/tetrapode split as in the previous approximately 100 Myr? Although the time interval is relatively short, it is crucial to understanding the events at the origin of vertebrates. By a systematic appraisal of gene phylogenies, we show that significantly more duplications occurred before than after the cartilaginous/bony vertebrate split. Our results support rounds of gene or genome duplications during a limited period of early vertebrate evolution and allow a better characterization of these events.  相似文献   

14.
Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.  相似文献   

15.
This review analyzes the current taxonomy of fungi whose criteria are based on a range of episemantic molecules. In this context, data on the chemical composition of fungal cells (membrane lipids, cytosolic carbohydrates, etc.) are considered in comparison with their counterparts found in higher eukaryotes and prokaryotes. Modern theories explaining the origin of fungi and their similarity to plants, animals, and bacteria are discussed. The biochemical criteria used in this work supported the division of fungi into Eumycota and Neomycota. The latter division, especially Basidiomycota, are more closely related to plants. The heterogeneity of the kingdom Fungi is underlined, the existence of Oomycota as a separate entity is supported, and the theory of the primitive nature of fungal cells is criticized from the viewpoint of biochemical adaptation.  相似文献   

16.
Phylogenetic reconstruction of vertebrate Hox cluster duplications   总被引:8,自引:2,他引:6  
In vertebrates and the cephalochordate, amphioxus, the closest vertebrate relative, Hox genes are linked in a single cluster. Accompanying the emergence of higher vertebrates, the Hox gene cluster duplicated in either a single step or multiple steps, resulting in the four-cluster state present in teleosts and tetrapods. Mammalian Hox clusters (designated A, B, C, and D) extend over 100 kb and are located on four different chromosomes. Reconstructing the history of the duplications and its relation to vertebrate evolution has been problematic due to the lack of alignable sequence information. In this study, the problem was approached by conducting a statistical analysis of sequences from the fibrillar-type collagens (I, II, III, and IV), genes closely linked to each Hox cluster which likely share the same duplication history as the Hox genes. We find statistical support for the hypothesis that the cluster duplication occurred as multiple distinct events and that the four-cluster situation arose by a three- step sequential process.   相似文献   

17.
Aciculosporium and Heteroepichloë (Clavicipitaceae) are characteristic bambusicolous fungi in east Asia. In this study, we examined their intergeneric relationships based on the ALDH1-1 gene, which encodes a member of the aldehyde dehydrogenase family. In the clavicipitaceous fungi examined in this study, the nucleotide sequence of the third exon of ALDH1-1 (Exon-3) is 889 bp in length and has no insertion/deletion. A phylogenetic tree based on Exon-3 indicated that the clavicipitaceous fungi could be divided into two large groups: Cordyceps, Nomuraea, and Ustilaginoidea species formed a paraphyletic group, and the other grass biotrophic species formed a monophyletic group. This monophyletic group was further divided into three groups with high bootstrap support: i.e., species with Neotyphodium anamorphs (e.g., Epichloë), species with Ephelis anamorphs (e.g., Heteroepichloë), and Aciculosporium-Claviceps species. We discuss the relationships among Aciculosporium, Heteroepichloë, and other clavicipitaceous fungi.  相似文献   

18.
Transposons are ubiquitous mobile genetic elements found in all eu- and prokaryotic cells. The first transposon identified, the maize Activator element, belongs to the hAT family. hAT transposons have been identified in most eukaryotic lineages, including plants, fungi, animals and even man. The basic structural and functional features of this transposon family and its phylogenetic roots are discussed in detail, including a phylogenetic tree deduced from the amino acid sequence of the most conserved part of the transposon-encoded transposase. Emphasis is given to the use of hAT transposons as tools for gene tagging and insect transformation as well as to their biological function, i.e. are they selfish DNA, beneficial companions, or even both?  相似文献   

19.
Duplications and deletions are known to cause a number of genetic disorders, yet technical difficulties and financial considerations mean that screening for these mutations, especially duplications, is often not performed. We have adapted multiplex amplifiable probe hybridization (MAPH) for the screening of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy. MAPH involves the quantitative recovery of specifically designed probes following hybridization to immobilized genomic DNA. We have engineered probes for each of the 79 exons of the DMD gene, and we analyzed them by using a 96-capillary sequencer. We screened 24 control individuals, 102 patients, and 23 potential carriers and detected a large number of novel rearrangements, especially small, one- and two-exon duplications. A duplication of exon 2 alone was the most frequently occurring mutation identified. Our analysis indicates that duplications occur in 6% of patients with DMD. The MAPH technique as modified here is simple, quick, and accurate; furthermore, it is based on existing technology (i.e., hybridization, PCR, and electrophoresis) and should not require new equipment. Together, these features should allow easy implementation in routine diagnostic laboratories. Furthermore, the methodology should be applicable to any genetic disease, it should be easily expandable to cover >200 probes, and its characteristics should facilitate high-throughput screening.  相似文献   

20.
Mountain areas are biodiversity hotspots and provide a multitude of ecosystem services of irreplaceable socio-economic value. In the European Alps, air temperature has increased at a rate of about 0.36°C decade−1 since 1970, leading to glacier retreat and significant snowpack reduction. Due to these rapid environmental changes, this mountainous region is undergoing marked changes in spring phenology and elevational distribution of animals, plants and fungi. Long-term monitoring in the European Alps offers an excellent natural laboratory to synthetize climate-related changes in spring phenology and elevational distribution for a large array of taxonomic groups. This review assesses the climatic changes that have occurred across the European Alps during recent decades, spring phenological changes and upslope shifts of plants, animals and fungi from evidence in published papers and previously unpublished data. Our review provides evidence that spring phenology has been shifting earlier during the past four decades and distribution ranges show an upwards trend for most of the taxonomic groups for which there are sufficient data. The first observed activity of reptiles and terrestrial insects (e.g. butterflies) in spring has shifted significantly earlier, at an average rate of −5.7 and −6.0 days decade−1, respectively. By contrast, the first observed spring activity of semi-aquatic insects (e.g. dragonflies and damselflies) and amphibians, as well as the singing activity or laying dates of resident birds, show smaller non-significant trends ranging from −1.0 to +1.3 days decade−1. Leaf-out and flowering of woody and herbaceous plants showed intermediate trends with mean values of −2.4 and −2.8 days decade−1, respectively. Regarding species distribution, plants, animals and fungi (N = 2133 species) shifted the elevation of maximum abundance (optimum elevation) upslope at a similar pace (on average between +18 and +25 m decade−1) but with substantial differences among taxa. For example, the optimum elevation shifted upward by +36.2 m decade−1 for terrestrial insects and +32.7 m decade−1 for woody plants, whereas it was estimated to range between −1.0 and +11 m decade−1 for semi-aquatic insects, ferns, birds and wood-decaying fungi. The upper range limit (leading edge) of most species also shifted upslope with a rate clearly higher for animals (from +47 to +91 m decade−1) than for plants (from +17 to +40 m decade−1), except for semi-aquatic insects (−4.7 m decade−1). Although regional land-use changes could partly explain some trends, the consistent upward shift found in almost all taxa all over the Alps is likely reflecting the strong warming and the receding of snow cover that has taken place across the European Alps over recent decades. However, with the possible exception of terrestrial insects, the upward shift of organisms seems currently too slow to track the pace of isotherm shifts induced by climate warming, estimated at about +62 to +71 m decade−1 since 1970. In the light of these results, species interactions are likely to change over multiple trophic levels through phenological and spatial mismatches. This nascent research field deserves greater attention to allow us to anticipate structural and functional changes better at the ecosystem level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号