首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hsp70 molecular chaperones facilitate protein folding and translocation by binding to hydrophobic regions of nascent or unfolded proteins, thereby preventing their aggregation. N-Ethylmaleimide (NEM) inhibits the ATPase and protein translocation-stimulating activities of the yeast Hsp70 Ssa1p by modifying its three cysteine residues, which are located in its ATPase domain. NEM alters the conformation of Ssa1p and disrupts the coupling between its nucleotide- and polypeptide-binding domains. Ssa1p and the yeast DnaJ homolog Ydj1p constitute a protein folding machinery of the yeast cytosol. Using firefly luciferase as a model protein to study chaperone-dependent protein refolding, we have found that NEM also inhibits the protein folding activity of Ssa1p. Interestingly, the NEM-modified protein (NEM-Ssa1p) is a potent inhibitor of protein folding. NEM-Ssa1p can prevent the aggregation of luciferase and stimulate the ATPase activity of Ssa1p suggesting that it acts as an inhibitor by binding to nonnative forms of luciferase and by competing with them for the polypeptide binding site of Ssa1p. NEM-Ssa1p inhibits Ssa1p/Ydj1p-dependent protein refolding at different stages indicating that the chaperones bind and release nonnative forms of luciferase multiple times before folding is completed.  相似文献   

2.
Ssc1, the major Hsp70 of the mitochondrial matrix, is involved in the translocation of proteins from the cytosol into the matrix and their subsequent folding. To better understand the physiological mechanism of action of this Hsp70, we have undertaken a biochemical analysis of Ssc1 and two mutant proteins, Ssc1--2 and Ssc1--201. ssc1--2 is a temperature-sensitive mutant defective in both translocation and folding; ssc1--201 contains a second mutation in this ssc1 gene that suppresses the temperature-sensitive growth defect of ssc1--2, correcting the translocation but not the folding defect. We found that although Ssc1 was competent to facilitate the refolding of denatured luciferase in vitro, both Ssc1--2 and Ssc1--201 showed significant defects, consistent with the data obtained with isolated mitochondria. Purified Ssc1--2 had a lowered affinity for a peptide substrate compared with wild-type Ssc1 but only in the ADP-bound state. This peptide binding defect was reversed in the suppressor protein Ssc1--201. However, a defect in the ability of Hsp40 to stimulate the ATPase activity of Ssc1--2 was not corrected in Ssc1--201. Thus, the inability of these two mutant proteins to efficiently facilitate luciferase refolding correlates with their defect in stimulation of ATPase activity by Hsp40s, indicating that this interaction is critical for protein folding in mitochondria.  相似文献   

3.
Hsp70 chaperone is one of the key protein machines responsible for the quality control of protein production in cells. Facilitating in vivo protein folding by counteracting misfolding and aggregation is the essence of its biological function. Although the allosteric cycle during its functional actions has been well characterized both experimentally and computationally, the mechanism by which Hsp70 assists protein folding is still not fully understood. In this work, we studied the Hsp70-mediated folding of model proteins with rugged energy landscape by using molecular simulations. Different from the canonical scenario of Hsp70 functioning, which assumes that folding of substrate proteins occurs spontaneously after releasing from chaperones, our results showed that the substrate protein remains in contacts with the chaperone during its folding process. The direct chaperone-substrate interactions in the open conformation of Hsp70 tend to shield the substrate sites prone to form non-native contacts, which therefore avoids the frustrated folding pathway, leading to a higher folding rate and less probability of misfolding. Our results suggest that in addition to the unfoldase and holdase functions widely addressed in previous studies, Hsp70 can facilitate the folding of its substrate proteins by remodeling the folding energy landscape and directing the folding processes, demonstrating the foldase scenario. These findings add new, to our knowledge, insights into the general molecular mechanisms of chaperone-mediated protein folding.  相似文献   

4.
Polier S  Dragovic Z  Hartl FU  Bracher A 《Cell》2008,133(6):1068-1079
Protein folding by Hsp70 is tightly controlled by cochaperones, including J-domain proteins that trigger ATP hydrolysis and nucleotide exchange factors (NEFs) that remove ADP from Hsp70. Here we present the crystal structure of the yeast NEF Sse1p (Hsp110) in complex with the nucleotide-binding domain (NBD) of Hsp70. Hsp110 proteins are homologous to Hsp70s and consist of an NBD, a beta sandwich domain, and a three helix bundle domain (3HBD). In the complex, the NBD of Sse1p is ATP bound, and together with the 3HBD it embraces the NBD of Hsp70, inducing opening and the release of bound ADP from Hsp70. Mutations that abolish NEF activity are lethal, thus defining nucleotide exchange on Hsp70 as an essential function of Sse1p. Our data suggest that Sse1p does not employ the nucleotide-dependent allostery and peptide-binding mode of canonical Hsp70s, and that direct interactions of substrate with Sse1p may support Hsp70-assisted protein folding in a cooperative process.  相似文献   

5.
Engagement of death receptors induces caspase activation and apoptosis. A recent study reported altered protein expression, including increased Hsp70 levels during CD95-mediated apoptosis. Here, we examined the mechanism underlying increased Hsp70 levels in cells challenged with a monoclonal antibody directed against the CD95 receptor. Levels of Hsp70 were found to increase in a dose-dependent manner, occurring independently of either heat shock factor 1 activation or the accumulation of Hsp70 messenger ribonucleic acid (mRNA), suggesting the involvement of posttranslational modifications. Inhibition of translation and de novo protein synthesis by cycloheximide resulted in Hsp70 protein levels diminishing over time in control cells, whereas its level remained constant during CD95 signaling. In addition, death receptor activation through exposure of cells to tumor necrosis factor-related apoptosis-inducing ligand did not alter Hsp70 levels. These findings demonstrate that receptor-specific signaling through the CD95 increases the stability of Hsp70 protein, rather than mRNA, when compared with control cells. The results describe a novel mechanism of heat shock protein accumulation, where increased protein stability and reduced turnover, is the mechanism by which Hsp70 accumulates in cells during CD95-mediated apoptosis.  相似文献   

6.
We studied the role of mitochondrial cyclophilin 20 (CyP20), a peptidyl-prolyl cis-trans isomerase, in preprotein translocation across the mitochondrial membranes and protein folding inside the organelle. The inhibitory drug cyclosporin A did not impair membrane translocation of preproteins, but it delayed the folding of an imported protein in wild-type mitochondria. Similarly, Neurospora crassa mitochondria lacking CyP20 efficiently imported preproteins into the matrix, but folding of an imported protein was significantly delayed, indicating that CyP20 is involved in protein folding in the matrix. The slow folding in the mutant mitochondria was not inhibited by cyclosporin A. Folding intermediates of precursor molecules reversibly accumulated at the molecular chaperones Hsp70 and Hsp60 in the matrix. We conclude that CyP20 is a component of the mitochondrial protein folding machinery and that it cooperates with Hsp70 and Hsp60. It is speculated that peptidyl-prolyl cis-trans isomerases in other cellular compartments may similarly promote protein folding in cooperation with chaperone proteins.  相似文献   

7.
Inhibitors of both heat shock proteins Hsp90 and Hsp70 have been identified in assays measuring luciferase refolding containing rabbit reticulocyte lysate or purified chaperone components. Here, we report the discovery of a series of phenoxy-N-arylacetamides that disrupt Hsp70-mediated luciferase refolding by binding to DnaJ, the bacterial homolog of human Hsp40. Inhibitor characterization experiments demonstrated negative cooperativity with respect to DnaJ and luciferase concentration, but varying the concentration of ATP had no effect on potency. Thermal shift analysis suggested a direct interaction with DnaJ, but not with Hsp70. These compounds may be useful tools for studying DnaJ/Hsp40 in various cellular processes.  相似文献   

8.
Tau aggregation and amyloidogenesis are common hallmarks for neurodegenerative disorders called tauopathies. The molecular chaperone network constitutes the cellular defense against insults such as tau aggregation. However, chaperone effects on tau are dichotomous. Loss of tau's microtubule-binding activity facilitates an inappropriate chaperone interaction that promotes an amyloidogenic tau conformation. Conversely, other chaperones are capable of promoting tau clearance. Here, we demonstrate that a critical contributor to tau triage is the DnaJ-binding domain of Hsp70 proteins. In particular, over-expression of the constitutive DnaJ, DnaJA1, mediated tau clearance, while knockdown facilitated tau accumulation. This clearance was not specific to distinct pathogenic tau species. The activity of DnaJA1 was attenuated by concomitant increases in Hsp70. Tau reductions facilitated by DnaJA1 were dependent on the integrity of lysines known to be poly-ubiquitinated in human Alzheimer's brain. In vivo, DnaJA1 and tau levels were inversely correlated. The effects of DnaJA1 were partially specific: DnaJA1 reduced the levels of a polyQ protein but had no significant effect on α-synuclein levels. These data suggest that DnaJA1 triages all tau species for ubiquitin-dependent clearance mechanisms. Moreover, the levels of DnaJA1 and Hsp70 seem to play against each other with regard to tau: as DnaJA1 levels increase, tau levels are reduced, but this can be prevented if Hsp70 levels are simultaneously induced. Thus, the DnaJ repertoire possibly represents a powerful set of genetic modifiers for tau pathogenesis. Further investigations could provide new insights about triage decisions that facilitate or prevent amyloidogenesis of tau and other proteins associated with neurodegenerative disease.  相似文献   

9.
Over-expression of the Hsp70 molecular chaperone prevents protein aggregation and ameliorates neurodegenerative disease phenotypes in model systems. We identified an Hsp70 activator, MAL1-271, that reduces α-synuclein aggregation in a Parkinson’s Disease model. We now report that MAL1-271 directly increases the ATPase activity of a eukaryotic Hsp70. Next, twelve MAL1-271 derivatives were synthesized and examined in a refined α-synuclein aggregation model as well as in an assay that monitors maturation of a disease-causing Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutant, which is also linked to Hsp70 function. Compared to the control, MAL1-271 significantly increased the number of cells lacking α-synuclein inclusions and increased the steady-state levels of the CFTR mutant. We also found that a nitrile-containing MAL1-271 analog exhibited similar effects in both assays. None of the derivatives exhibited cellular toxicity at concentrations up to 100?μm, nor were cellular stress response pathways induced. These data serve as a gateway for the continued development of a new class of Hsp70 agonists with efficacy in these and potentially other disease models.  相似文献   

10.
11.
12.
Accumulation of aggregation‐prone misfolded proteins disrupts normal cellular function and promotes ageing and disease. Bacteria, fungi and plants counteract this by solubilizing and refolding aggregated proteins via a powerful cytosolic ATP‐dependent bichaperone system, comprising the AAA+ disaggregase Hsp100 and the Hsp70‐Hsp40 system. Metazoa, however, lack Hsp100 disaggregases. We show that instead the Hsp110 member of the Hsp70 superfamily remodels the human Hsp70‐Hsp40 system to efficiently disaggregate and refold aggregates of heat and chemically denatured proteins in vitro and in cell extracts. This Hsp110 effect relies on nucleotide exchange, not on ATPase activity, implying ATP‐driven chaperoning is not required. Knock‐down of nematode Caenorhabditis elegans Hsp110, but not an unrelated nucleotide exchange factor, compromises dissolution of heat‐induced protein aggregates and severely shortens lifespan after heat shock. We conclude that in metazoa, Hsp70‐Hsp40 powered by Hsp110 nucleotide exchange represents the crucial disaggregation machinery that reestablishes protein homeostasis to counteract protein unfolding stress.  相似文献   

13.
Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.  相似文献   

14.
Molecular chaperones facilitate the correct folding of other proteins under physiological and stress conditions. Recently it has become evident that various co-chaperone proteins regulate the cellular functions of these chaperones, particularly Hsp70 and Hsp90. Hop is one of the most extensively studied co-chaperones that is able to directly associate with both Hsp70 and Hsp90. The current dogma proposes that Hop functions primarily as an adaptor that directs Hsp90 to Hsp70-client protein complexes in the cytoplasm. However, recent evidence suggests that Hop can also modulate the chaperone activities of these Hsps, and that it is not dedicated to Hsp70 and Hsp90. While the co-chaperone function of Hop within the cytoplasm has been extensively studied, its association with nuclear complexes and prion proteins remains to be elucidated. This article will review the structural features of Hop, and the evidence that its biological function is considerably broader than previously envisaged.  相似文献   

15.
16.
While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-?SBD and Hsp70-?NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD.  相似文献   

17.
CAD (caspase-activated DNase) that causes chromosomal DNA fragmentation during apoptosis exists as a complex with ICAD (inhibitor of CAD) in proliferating cells. Here, we report that denatured CAD is functionally refolded with Hsc70-Hsp40 and ICAD. Hsc70-Hsp40 suppresses the aggregation of the denatured CAD, but cannot restore its enzymatic activity. In contrast, ICAD could not suppress the aggregation of CAD, but supported the CAD's renaturation with Hsc70-Hsp40, indicating that ICAD recognizes the quasi-native folding state of CAD that is conferred by Hsc70-Hsp40. Using an in vitro translation system, we then showed that during CAD translation, Hsc70-Hsp40 as well as ICAD bind to the nascent CAD polypeptide, while on ribosomes. These results indicate that ICAD together with Hsc70-Hsp40 assists the folding of CAD during its synthesis, and that the CAD*ICAD heterodimer is formed co-translationally.  相似文献   

18.
Molecular chaperones of the Hsp70 family (bacterial DnaK, DnaJ, and GrpE) were shown to be strictly required for refolding of firefly luciferase from a denatured state and thus for effective restoration of its activity. At the same time the luciferase was found to be synthesized in an Escherichia coli cell-free translation system in a highly active state in the extract with no chaperone activity. The addition of the chaperones to the extract during translation did not raise the activity of the enzyme. The abrupt arrest of translation by the addition of a translational inhibitor led to immediate cessation of the enzyme activity accumulation, indicating the cotranslational character of luciferase folding. The results presented suggest that the chaperones of the Hsp70 family are not required for effective cotranslational folding of firefly luciferase.  相似文献   

19.
T Hesterkamp  B Bukau 《The EMBO journal》1998,17(16):4818-4828
Folding of newly synthesized cytosolic proteins has been proposed to require assistance by Hsp70 chaperones. We investigated whether two Hsp70 homologs of Escherichia coli, DnaK and HscA, have this role in vivo. Double mutants lacking dnaK and hscA were viable and lacked defects in protein folding at intermediate temperature. After heat shock, a subpopulation of pre-existing proteins slowly aggregated in mutants lacking DnaK, but not HscA, whereas the bulk of newly synthesized proteins displayed wild-type solubility. For thermolabile firefly luciferase, DnaK was dispensable for de novo folding at 30 degrees C, but essential for aggregation prevention during heat shock and subsequent refolding. DnaK and HscA are thus not strictly essential for folding of newly synthesized proteins. DnaK instead has functions in refolding of misfolded proteins that are essential under stress.  相似文献   

20.
HOP is a cochaperone belonging to the foldosome, a system formed by the cytoplasmic Hsp70 and Hsp90 chaperones. HOP acts as an adapter protein capable of transferring client proteins from the first to the second molecular chaperone. HOP is a modular protein that regulates the ATPase activity of Hsp70 and Hsp90 to perform its function. To obtain more detailed information on the structure and function of this protein, we produced the recombinant HOP of Plasmodium falciparum (PfHOP). The protein was obtained in a folded form, with a high content of α-helix secondary structure. Unfolding experiments showed that PfHOP unfolds through two transitions, suggesting the presence of at least two domains with different stabilities. In addition, PfHOP primarily behaved as an elongated dimer in equilibrium with the monomer. Small-angle X-ray scattering data corroborated this interpretation and led to the reconstruction of a PfHOP ab initio model as a dimer. Finally, the PfHOP protein was able to inhibit and to stimulate the ATPase activity of the recombinant Hsp90 and Hsp70–1, respectively, of P. falciparum. Our results deepened the knowledge of the structure and function of PfHOP and further clarified its participation in the P. falciparum foldosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号