首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum response element binding protein (SRE BP) is a novel binding factor present in nuclear extracts of avian and NIH 3T3 fibroblasts which specifically binds to the cfos SRE within a region overlapping and immediately 3' to the CArG box. Site-directed mutagenesis combined with transfection experiments in NIH 3T3 cells showed that binding of both serum response factor (SRF) and SRE BP is necessary for maximal serum induction of the SRE. In this study, we have combined size fractionation of the SRE BP DNA binding activity with C/EBPbeta antibodies to demonstrate that homodimers and heterodimers of p35C/EBPbeta (a transactivator) and p20C/EBPbeta (a repressor) contribute to the SRE BP complex in NIH 3T3 cells. Transactivation of the SRE by p35C/EBPbeta is dependent on SRF binding but not ternary complex factor (TCF) formation. Both p35C/EBPbeta and p20C/EBPbeta bind to SRF in vitro via a carboxy-terminal domain that probably does not include the leucine zipper. Moreover, SRE mutants which retain responsiveness to the TCF-independent signaling pathway bind SRE BP in vitro with affinities that are nearly identical to that of the wild-type SRE, whereas mutant SRE.M, which is not responsive to the TCF-independent pathway, has a nearly 10-fold lower affinity for SRE BP. We propose that C/EBPbeta may play a role in conjunction with SRF in the TCF-independent signaling pathway for SRE activation.  相似文献   

2.
3.
4.
5.
6.
7.
8.
We previously described a 110-kDa tyrosine phosphoprotein, Sob 1, that regulates formation of the DNA binding complex Band A at the c-fos serum response element (SRE) during T cell activation. Using competition and mutant oligonucleotide analysis, we have determined that both the core CArG box of the c-fos SRE and the 3' sequences flanking the CArG box are necessary for stable Band A complex formation. Moreover, using transient transfection and reporter assays, we show that mutations affecting Band A complex formation in vitro also impaired serum induction of c-fos gene expression in vivo. Since mutation at this site has no effect on SRF binding, our results suggest that in combination with SRE/SRF, Sob 1-regulated factor(s) bind at the 3' side of SRE to form Band A, and this confers maximal serum induction of c-fos gene expression via the SRE.  相似文献   

9.
10.
11.
12.
W A Ryan  Jr  B R Franza  Jr    M Z Gilman 《The EMBO journal》1989,8(6):1785-1792
  相似文献   

13.
14.
15.
16.
Elevation of intracellular casein kinase II (CKII) levels through microinjection of purified CKII results in the rapid and transient induction of c-fos in quiescent rat embryo fibroblasts, and activation of quiescent cells by serum is accompanied by the nuclear relocation of endogenous CKII. The induction of c-fos by CKII is inhibited by coinjection of oligonucleotides corresponding to the sequence of the serum response element (SRE) present in the c-fos promoter, indicating that competitive displacement of positive factors from the endogenous c-fos SRE prevents c-fos induction by CKII. Furthermore, the expression of c-fos induced by either CKII injection or serum activation is also inhibited by microinjection of antibodies against the 67 kDa serum response factor (p67SRF) indicating the absolute requirement of p67SRF in this process. Finally, we show the specific phosphorylation of p67SRF in vivo following microinjection of CKII into quiescent cells. Together, these data strongly support that CKII induces c-fos expression through binding/activation of the phosphorylated p67SRF at the SRE sequence.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号