首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrated the microbial purification of a model wastewater containing 2,4,6-trinitrophenol (TNP), which was carried out in a continuously working biological aerated filter (BAF). The main emphasis was on the operating performance of the reactor as a function of the pollution load. TNP was degraded at a maximum volumetric removal rate of 2.53 g TNP/L d, with low residual COD and TNP concentration. Overloading of TNP inhibited the nitrite-oxidizing activity, resulting in poor TNP degradation performance in the BAF system. The inhibition depended on some factors, such as influent concentrations and flow rates of the influent. It is assumed that nitrite-oxidizing occurred spontaneously during TNP degradation in the BAF system, could have significant influence on TNP wastewater treatment. One year after the reactor start-up, the dominance of Rhodococcus, which was initially inoculated in the reactor, was confirmed by analysis of 16S rDNA sequence of the PCR products separated by DGGE.  相似文献   

2.
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.  相似文献   

3.
Up-flow anaerobic sludge blanket (UASB) reactors are being used with increasing regularity all over the world, especially in India, for a variety of wastewater treatment operations. Consequently, there is a need to develop methodologies enabling one to determine UASB reactor performance, not only for designing more efficient UASB reactors but also for predicting the performance of existing reactors under various conditions of influent wastewater flows and characteristics. This work explores the feasibility of application of an artificial neural network-based model for simulating the performance of an existing UASB reactor. Accordingly, a neural network model was designed and trained to predict the steady-state performance of a UASB reactor treating high-strength (unrefined sugar based) wastewater. The model inputs were organic loading rate, hydraulic retention time, and influent bicarbonate alkalinity. The output variables were one or more of the following, effluent substrate concentration (Se), reactor bicarbonate alkalinity, reactor pH, reactor volatile fatty acid concentration, average gas production rate, and percent methane content of the gas. Training of the neural network model was achieved using a large amount of experimentally obtained reactor performance data from the reactor mentioned above as the training set. Training was followed by validation using independent sets of performance data obtained from the same UASB reactor. Subsequently, simulations were performed using the validated neural network model to determine the impact of changes in parameters like influent chemical oxygen demand (COD) concentration and hydraulic retention time on the reactor performance. Simulation results thus obtained were carefully analyzed based on qualitative understanding of UASB process and were found to provide important insights into key variables that were responsible for influencing the working of the UASB reactor under varying input conditions.  相似文献   

4.
Glycerol-3-phosphate (G3P) was synthesized from glycerol using glycerol kinase (GK). This reaction requires adenosine triphosphate (ATP) and was coupled with the ATP regeneration reaction using acetate kinase (AK) in a batch-operated ultrafiltration hollow-fiber reactor. By taking into consideration the dynamic nature of the bioreactor performance under non-steady-state conditions, a model for the performance of a batch membrane reactor for G3P synthesis coupled with ATP regeneration was developed and studied. The simulation results showed good agreement with the experimental results. The simulation studies have provided some insight into the process dynamics of the coupled reactions in the reactor system studied. For the reactor operational model used, in which the enzymes are retained in the shell side and the substrates are also initially placed in the shell side, it was found that the substrate concentration in the lumen side increased to a level higher than that in the shell side, and a backdiffusion occurred from the lumen side to the shell side during reactor operation. The ratio of the reaction rate to diffusion rate goes through a sharp peak during the time that the direction of diffusion is reversed. For another reactor operational model, in which the substrates were initially placed in the lumen side and enzymes were retained in the shell side, it was found that the rate-controlling step between the reaction and diffusion was switched during the reactor operation. Initially, the reaction rate increased while the diffusion rate was high and the substrate concentrations increased in the shell side. The ratio of reaction rate to diffusion rate increased to a maximum and remained at a constant level as the diffusion rate decreased to a low level due to the nonlinear characteristics of mass transfer process. This study provides information that is useful for optimization of batch membrane enzyme reactor operation and for a fed-batch-type process with an intermittent feeding strategy for efficient use of substrates.  相似文献   

5.
6.
A model was developed for the anaerobic digestion of a glucose-based medium in an innovative high-rate reactor, the periodic anaerobic baffled reactor (PABR). The model considers each PABR compartment as two variable volume interacting sections, of constant total volume, one with high solids and one with low solids concentration, with the gas and liquid flows influencing the material flows between the two sections. For the simulation of glucose degradation, the biomass was divided into acidogenic, acetogenic and methanogenic groups of microorganisms. The kinetic part of the model accounted for possible inhibition of acidogenesis, acetogenesis and methanogenesis by volatile fatty acids. The model succeeded in predicting the reactor performance upon step increases in the organic loading rate.  相似文献   

7.
8.
Studies of microbial purification of a model waste water containing 4-nitrophenol were carried out in a continuously working aerobic solid-bed reactor. The main emphasis was on the dynamic behaviour of the system after a sudden change in cultivation conditions and on the steady-state performance of the reactor as a function of the pollution load. A change from ammonium-free to ammonium-containing medium hardly influenced the nitrophenol degradation. The reactor responded differently to an increase in pollutant load, which was brought about by increasing either the 4-nitrophenol content or the flow of the waste water. Up to a load of 270 mg l−1 h−1 the pollutant was stably and almost completely degraded. At a higher load, only a partial 4-nitrophenol degradation took place. A mathematical model was derived to describe the processes that occurred in the reactor. By segregation into two compartments – the aqueous phase and the biofilm – account was taken of the fact that the pollutant is carried into the biofilm by diffusion and is degraded there. The observed relations between the pollutant load, the pollutant concentration in the outlet of the reactor and the reactor performance agreed with the simulated process behaviour. As the model simulation showed, the incomplete pollutant degradation at a higher reactor load was caused by oxygen limitation. Received: 5 August 1998 / Received revision: 22 October 1998 / Accepted: 24 October 1998  相似文献   

9.
10.
Comparative performance of biofilm reactor types   总被引:1,自引:0,他引:1  
Development of a unified model of biofilm-reactor kinetics is based on substrate-utilization kinetics, mass transport, biofilm growth, and reactor analysis. The model is applied to steady-state conditions for complete-mix, fixed-bed, and fluidized-bed reactors with and without recycle. The results of modeling experiments demonstrate that simple loading factors and kinetic relationships are insufficient to describe the performance of a variety of biofilm processes. Instead, the interactions among utilization kinetics, biofilm growth, and reactor configuration determine the performance. For example, fluidized-bed reactors can achieve superior performance to complete-mix and fixed-bed reactors because the biofilm is evenly distributed throughout the reactor while the liquid regime has plug-flow characteristics. When it is possible, experimental results which demonstrate key concepts are presented.  相似文献   

11.
Experiments were carried out to investigate the process of a continuous enzymatic synthesis of L-aspartic acid from ammonium fumarate in uniform filling flow reactors. Escherichia coli (Soviet strain 85) cells immobilized in polyacrylamide gel granules reinforced by a solid carrier were used as biocatalysts. The conditions, under which a high aspartase activity of the biocatalyst and a stable hydrodynamic performance of the reactor were maintained, were determined. The main kinetic characteristics of a continuous performance of the reactor for 150 days were obtained.  相似文献   

12.
13.
Regulation of CSF1 promoter by the SWI/SNF-like BAF complex   总被引:19,自引:0,他引:19  
Liu R  Liu H  Chen X  Kirby M  Brown PO  Zhao K 《Cell》2001,106(3):309-318
The mammalian BAF complex regulates gene expression by modifying chromatin structure. In this report, we identify 80 genes activated and 2 genes repressed by the BAF complex in SW-13 cells. We find that prior binding of NFI/CTF to the NFI/CTF binding site in CSF1 promoter is required for the recruitment of the BAF complex and the BAF-dependent activation of the promoter. Furthermore, the activation of the CSF1 promoter requires Z-DNA-forming sequences that are converted to Z-DNA structure upon activation by the BAF complex. The BAF complex facilitates Z-DNA formation in a nucleosomal template in vitro. We propose a model in which the BAF complex promotes Z-DNA formation which, in turn, stabilizes the open chromatin structure at the CSF1 promoter.  相似文献   

14.
Materials used previously as biological aerated filter (BAF) media have not combined optimal biofilm supporting properties with optimal wear characteristics. Increasing its bentonite content decreased the attrition rate and friability of foamed clay. Although the altered medium exhibited less surface roughness, results from small-scale reactors confirmed that it had maintained its biological attributes. This suggests that surface roughness has a limited influence on biofilm formation.  相似文献   

15.
The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

16.
Two-phase anaerobic digestion for production of hydrogen-methane mixtures   总被引:5,自引:0,他引:5  
An anaerobic digestion process to produce hydrogen and methane in two sequential stages was investigated, using two bioreactors of 2 and 15 L working volume, respectively. This relative volume ratio (and shorter retention time in the second, CH(4)-producing reactor) was selected, in part, to test the assumption that separation of phase can enhance metabolism in the second methane producing reactor. The reactor system was seeded with conventional anaerobic digester sludge, fed with a glucose-yeast extract--peptone medium and operated under conditions of relatively low mixing, to simulate full scale operation. A total of nine steady states were investigated, spanning a range of feed concentrations, dilution rates, feed carbon to nitrogen ratios and degree of integration of the two stages. The performance of this two-stage process and potential practical applications for the production of clean-burning hydrogen-methane mixtures are discussed.  相似文献   

17.
Vortex flow reactors (VFRs) are a good option when fragile particles are present in the medium, due to their gentle but efficient stirring characteristics. However, the presence of a by-pass stream may deteriorate the reactor performance, and particles of inadequate density may either settle down or clog the reactor outlet. This work assessed the performance of an enzymic VFR. Fructose–glucose isomerization, catalyzed by immobilized glucoisomerase was the test reaction, taking advantage of the negligible changes that it causes on the medium viscosity. Intra- and extra-particle mass transfer effects were avoided. Reactor geometry (radius ratio η=0.677 and aspect ratio Γ=18.30) and residence time were selected aiming at possible applications of the device as a bioreaction and/or adsorption system. Visualization experiments confirmed that the vortices’ cores stop their axial displacement when the rotation of the inner cylinder is increased. Intermediate rotations were the most detrimental to reactor performance, due to by-pass effects. Vortex agitation is very gentle, causing no detectable damage to shear-sensitive particles.  相似文献   

18.
Dynamic fuzzy model based predictive controller for a biochemical reactor   总被引:3,自引:1,他引:2  
The kinetics of bioreactions often involve some uncertainties and the dynamics of the process vary during the course of fermentation. For such processes, conventional control schemes may not provide satisfactory control performance and demands extra effort to design advanced control schemes. In this study, a dynamic fuzzy model based predictive controller (DFMBPC) is presented for the control of a biochemical reactor. The DFMBPC incorporates an adaptive fuzzy modeling framework into a model based predictive control scheme to derive analytical controller output. The DFMBPC has the flexibility to opt with various types of fuzzy models whose choice also lead to improve the control performance. The performance of DFMBPC is evaluated by comparing with a fuzzy model based predictive controller (FMBPC) with no model adaptation and a conventional PI controller. The results show that DFMBPC provides better performance for tracking setpoint changes and rejecting unmeasured disturbances in the biochemical reactor.  相似文献   

19.
Two lab-scale upflow biological anaerobic filters (BAF) packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) were employed to investigate effects of the C/N ratios and filter media on the BAF performance during the restart period. The results indicated that BAF could be restarted normally after one-month cease. The C/N ratio of 4.0 was the thresholds of nitrate removal and nitrite accumulation. TN removal and phosphate uptake reached the maximum value at the same C/N ratio of 5.5. Ammonia formation was also found and excreted a negative influence on TN removal, especially when higher C/N ratios were applied. Nutrients were mainly degraded within the height of 25 cm from the bottom. In addition, SFCP, as novel filter media manufactured by wastes–dewatered sludge and fly ash, represented a better potential in inhibiting nitrite accumulation, TN removal and phosphate uptake due to their special characteristics in comparison with CCP.  相似文献   

20.
Hydrolyses of olive oil were performed in a reactor with lipase immobilized on a laboratory ultrafiltration poliamide-6 membrane. The reactor consisted of two circulating phases of olive oil and buffer solution. For the characterization of the reactor performance, a model of the hydrolysis process was developed. It was created by means of thermodynamic network representation of both the chemical processes and the transport of the reactants. According to an estimated bond graph network, the model is represented quantatively by a set of thirty-three differential equations representing the time derivatives of the particular species concentration. The parameters of the model were estimated based on experimental data and/or literature notations. Close agreement of numerical estimations of the product concentrations with experimental data was gained. The model enabled an extended analysis of the influence of different reaction parameters, enzyme inhibition and concentration of the reactants on reactor performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号