首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A standard dose of 500 IU of eCG is commonly given to progestogen pre-treated anestrous ewes for induction of estrus. Twelve seasonally anestrous and 12 cyclic Western White Face ewes were treated for 12 days with intravaginal sponges impregnated with medroxyprogesterone acetate (MAP). In trials in both the breeding and nonbreeding seasons, six randomly selected ewes were given 500 IU of eCG at sponge removal to determine the effects of low dose of eCG on ovarian antral follicular dynamics and ovulation. Ultrasound scanning and blood sampling were done daily. Treatment with eCG did not have marked effects on antral follicular growth. All ewes ovulated, except for five of six control anestrous ewes. Luteal structures and progesterone secretion were confirmed in all but the control anestrous ewes. In the breeding season, peak progesterone concentrations were greater (P<0.05) in eCG-treated compared to control ewes. Daily serum estradiol concentrations were greater in the periovulatory period in eCG-treated compared to control ewes (treatment-by-day interaction; P<0.05), particularly in anestrus. Progestogen-treated ewes ovulated follicles from several follicular waves, in contrast to ovulations of follicles from the final wave of the cycle in untreated, cyclic ewes. Anestrous ewes exhibited more frequent follicular waves and FSH peaks compared to cyclic ewes after a progestogen/eCG treatment. In conclusion, 500 IU of eCG given after 12 days of progestogen treatment had limited effects on the dynamics of ovarian follicular waves. However, eCG treatment increased serum concentrations of estradiol during the periovulatory period, particularly in anestrous ewes; this probably resulted in the synchronous estrus and ovulation in anestrous ewes.  相似文献   

2.
The mechanisms of ovulatory compensation following unilateral ovariectomy (ULO) are still not understood. In the present study, we investigated the short- and long-term effects of ULO in sheep using transrectal ovarian ultrasonography and hormone estimations made during the estrous cycle in which surgery was done, the estrous cycle 2 mo after surgery, and the 17-day period during the subsequent anestrus. The ULOs were done when a follicle in the first follicular wave of the cycle reached a diameter > or =5 mm, leaving at least one corpus luteum and one ovulatory-sized follicle in the remaining ovary. Ovulation rate per ewe was 50% higher in the ULO ewes compared with the control ewes at the end of the cycle during which surgery was performed, but it did not differ between groups at the end of the cycle, 2 mo later. This compensation of ovulation rate in ULO ewes was due to ovulation of follicles from the penultimate follicular wave in addition to those from the final wave of the cycle. Ovulation from multiple follicular waves appeared to be due to a prolongation of the static phase of the largest follicle of the penultimate wave of the cycle. Interestingly, the length of the static phase of waves was prolonged in ULO ewes compared with control ewes in every instance where the length of the static phase could be determined. Changes in follicular dynamics due to ULO were not associated with alterations in FSH and LH secretion. In conclusion, ovulatory compensation in ULO sheep involves ovulation from multiple follicular waves due to the lengthened static phase of ovulatory-sized follicles. These altered antral follicular dynamics do not appear to be FSH or LH dependent. Further studies are required to examine the potential role of the nervous system in the enhancement of the life span of the ovulatory-sized follicles leading to ovulatory compensation by the unpaired ovary in ULO sheep.  相似文献   

3.
Follicular dynamics and ovulation were compared in 3 groups of anestrous ewes: those treated with medroxyprogesterone acetate (MAP) sponges for 12 d, then with 750 IU PMSG at the time of sponge removal (P4 + PMSG, n = 6), or PMSG alone (n = 6) and untreated controls (n = 6). Waves of follicular activity were observed in all the animals. In the P4 + PMSG treatment group, MAP priming permitted more ovulatory follicles (P < 0.001) to be recruited without changing follicle growth rate; MAP priming also delayed the time of ovulation (P < 0.001) and the time of the LH surge (P < 0.01), which allowed for an increase in the size of ovulatory follicles (P < 0.05). Ovulation also resulted in normal luteal function after P4 + PMSG (P < 0.01) but not after PMSG alone, since premature luteal regression occurred in 80% of the cases and was related to the presence of follicles > 4 mm when P4 levels were < 1 ng/mL on the day following ovulation. The results showed that MAP priming increased the ovulation rate by increasing the number of follicles that responded to PMSG.  相似文献   

4.
Follicular recruitment and luteal response to superovulatory treatment initiated relative to the status of the first wave of the ovine estrous cycle (Wave 1) were studied. All ewes (n = 25) received an intravaginal progestagen sponge to synchronize estrous cycles, and ewes were monitored daily by transrectal ultrasonography. Multiple-dose FSH treatment (total dose = 100 mg NIH-FSH-P1) was initiated on the day of ovulation (Day 0 group) in 16 ewes. In the remaining 9 ewes, FSH treatment was started 3 d after emergence of the largest follicle of Wave 1 (Day 3 group). Ewes received PGF(2alpha) with the last 2 FSH treatments to induce luteolysis. Daily blood samples were taken to determine progesterone profiles and to evaluate the luteal response subsequent to superovulation. The ovulation rate was determined by ultrasonography and correlated with direct observation of the ovaries during laparotomy 5 to 6 d after superovulatory estrus when the uterus was flushed to collect embryos. Results confirmed that follicular recruitment was suppressed by the presence of a large, growing follicle. In the Day 0 and Day 3 groups, respectively, mean numbers (+/- SEM) of large follicles (>/= 4 mm) recruited were 6.4 +/- 0.6 and 2.7 +/- 0.7 (P < 0.01) at 48 h after the onset of treatment, and 6.7 +/- 0.5 and 5.1 +/- 0.6 (P = 0.08) at 72 h after the onset of treatment. Ovulation rates were 5.6 +/- 0.8 and 3.3 +/- 0.8 in the respective groups (P < 0.05). The number of transferable embryos was 1.8 +/- 0.5 and 0.3 +/- 0.2 in the respective groups (P < 0.05). Short luteal phases (相似文献   

5.
Fertility is often lower in anestrous compared to cyclic ewes, after conventional estrus synchronization. We hypothesized that synchronization of ovarian follicular waves and ovulation could improve fertility at controlled breeding in anestrous ewes. Estradiol-17beta synchronizes follicular waves in cattle. The objectives of the present experiments were to study the effect of an estradiol injection, with or without a 12-d medroxyprogesterone acetate (MAP) sponge treatment, on synchronization of follicular waves and ovulation in anestrous ewes. Twenty ewes received sesame oil (n=8) or estradiol-17beta (350 microg; n=12). Eleven ewes received MAP sponges for 12d and were treated with oil (n=5) or estradiol-17beta (n=6) 6d before sponge removal. Saline (n=6) or eCG (n=6) was subsequently given to separate groups of ewes at sponge removal in the MAP/estradiol-17beta protocol. Estradiol treatment alone produced a peak in serum FSH concentrations (4.73+/-0.53 vs. 2.36+/-0.39 ng/mL for treatment vs. control; mean+/-S.E.M.) after a short-lived (6 h) suppression. Six of twelve ewes given estradiol missed a follicular wave around the time of estradiol injection. Medroxyprogesterone acetate-treated ewes given estradiol had more prolonged suppression of serum FSH concentrations (6-18 h) and a delay in the induced FSH peak (32.3+/-3.3 vs. 17.5+/-0.5 h). Wave emergence was delayed (5.7+/-0.3 vs. 1.4+/-0.7d from the time of estradiol injection), synchronized, and occurred at a predictable time (5-7 vs. 0-4d) compared to ewes given MAP alone. All ewes given eCG ovulated 3-4d after injection; this predictable time of ovulation may be efficacious for AI and embryo transfer.  相似文献   

6.
The present study was developed to assess possible effects on ovulatory response and embryo yields arising from the presence of a corpus luteum (CL) at the time of initiation of the progestagen treatment used in superovulatory protocols in sheep. In breeding season, estrus was synchronized in 25 Manchega ewes using 40 mg FGA sponges for 14 days, together with a single dose of 125 microg of cloprostenol on Day 12, with Day 0 as day of progestagen insertion. Superovulatory treatment consisted of eight decreasing doses (1.5 x 3 ml, 1.25 x 2 ml, and 1 x 3 ml) of Ovagen twice daily from 60 h before to 24 h after sponge removal. The presence or absence of corpora lutea was assessed by transrectal ultrasonography at progestagen insertion and at first FSH dose. Number and size of all follicles > or = 2 mm were also evaluated at first FSH dose. The number of corpora lutea and the number and viability of recovered embryos in response to the treatment were evaluated 7 days after sponge removal. No significant effect on ovarian response of the presence of a CL at sponge insertion in 21 of the 25 ewes (84%) was detected. However, ewes with a CL at first FSH dose (16 ewes, 64%) yielded a higher number of transferable embryos (7.2 +/- 1.4 versus 2.7 +/- 0.7, P < 0.05), since the embryo degeneration rate was increased in sheep without a CL (42.5% versus 12.7%, P < 0.01). Analysis of possible effects derived from the presence of a large presumptively dominant follicle (> or = 6 mm) at first FSH dose showed that both recovery and viability rates were lowest (P < 0.05) in ewes bearing a large follicle in the absence of a CL (40.5 and 50.6%, respectively), and highest in ewes that did not show a large follicle but in which a CL was present (73.9 and 85.2%). The final number of transferable embryos was very different between groups (10.2 versus 1.8, P < 0.01). These results indicate that the number and quality of embryos obtained from superovulated ewes is affected by the presence of a CL prior to the first FSH dose (i.e. by the stage of the estrous cycle at progestagen insertion) and also by an interaction with suppressive effects from large dominant follicles. This finding suggests the existence of some effects on follicular population prior to the FSH treatment that may compromise follicle and oocyte developmental competence. It seems reasonable to hypothesize that superovulatory yields would be increased by beginning the treatment during the early-luteal phase of the estrous cycle, allowing for the presence of a CL along with the progestagen treatment.  相似文献   

7.
The aim of this study was to evaluate the effect of the length of a progestagen treatment (12 d vs. 6 d) on follicular dynamics, estrus synchronization and pregnancy rate using medroxyprogesterone acetate (MAP) with or without an eCG dose at the end of MAP treatment. One hundred sixty Polwarth ewes were divided into four equal groups: long-term treated (LT, n=40); short-term treated (ST, n=40); long-term treated plus eCG (LTeCG, n=40); and short-term treated plus eCG (STeCG, n=40). Five ewes of each group were separated to undergo daily transrectal ultrasonography, and blood samples were taken for hormone determination. Until 96 h after sponge withdrawal the number of ewes in estrus was higher in both long-term-treated groups than in both short-term-treated groups but at the end of the observational period (144 h) no significant differences were found among groups. The pregnancy rate was higher in the ST group (87%) than in the other groups (LT, 63%; LTeCG, 67%; and STeCG, 58%; P< or =0.03). The ovulatory follicle emerged before sponge withdrawal in long-term-treated ewes (-3.8+/-0.4 d and -2.2+/-0.8 d for LT and LTeCG, respectively), whereas in short-term-treated ewes it emerges around sponge removal (0.4+/-1.1 d and 0.5+/-0.5 d for ST and STeCG, respectively; P< or =0.01). The ovulatory follicle in the LT group had a longer lifespan and attained a larger (P< or =0.05) maximum diameter than in the ST group. We conclude: a) that the lower pregnancy rate observed after long-term progestagen treatment was related to a slower follicular turnover that promoted the ovulation of persistent dominant follicles; (b) that short-term treatment resulted in a higher pregnancy rate probably due to the ovulation of newly recruited growing follicles; and (c) treatment with eCG had no advantage in association with long-term treatment and had a deleterious effect in combination with short-term treatment with MAP.  相似文献   

8.
Ovarian follicular development was characterized in 24 Spanish Merino ewes to study effects of the follicular status and the FSH commercial product used on follicular growth and subsequent superovulatory response. Estrus was synchronized using 40 mg fluorogestone acetate sponges. The superovulatory treatment consisted in 2 daily i.m. injections of FSH from 48 h before to 12 h after sponge removal. Sheep were assigned randomly to 2 groups treated with 6 decreasing doses (4, 4, 3, 3, 2, 2 mg) of FSH-P or with 6 doses of 1.25 mL of OVAGEN. Growth and regression of all follicles > or = 2 mm were observed by transrectal ultrasonography, and recorded daily from Day 6 before sponge insertion to the first FSH injection, and then twice daily until estrus was detected with vasectomized rams. Differences were detected in follicular development from the first FSH injection to detection of estrus (-48 to 36 h from sponge removal) between groups. Administration of FSH-P increased the appearance of new follicles with respect to OVAGEN (6.3 +/- 0.7 vs 4.8 +/- 0.4; P < 0.05), and the mean number of medium (4 to 5 mm) follicles (8.9 +/- 1.2 vs 6.6 +/- 0.9; P < 0.05). However, the mean number of follicles that regressed in size after sponge removal (5.9 +/- 0.4 vs 3.3 +/- 0.4) and the number of preovulatory sized follicles that did not ovulate (60 vs 42.4%) were also higher in FSH-P treated ewes (P < 0.05). So, finally, there were no differences in ovulation rate, as determined by laparoscopy on Day 7 after sponge removal, between ewes treated with FSH-P or OVAGEN (6.3 +/- 1.9 vs 7.0 +/- 1.7 CL). In all the ewes, the ovulatory response was related (P < 0.05) both to the number of small follicles (2 to 3 mm in diameter) present in the ovaries at the start of treatment with exogenous FSH and to the number of follicles that reached > or = 4 mm in size at estrus, despite differences in the pattern of follicular development when using different commercial products.  相似文献   

9.
Medroxyprogesterone acetate (MAP) from intravaginal sponges prolongs the lifespan of large ovarian follicles when administered after prostaglandin F2alpha (PGF2alpha)-induced luteolysis early in the luteal phase of ewes. The present study was designed to determine whether a PGF2alpha/MAP treatment applied at midcycle would alter the pattern of antral follicle growth and increase ovulation rate in nonprolific ewes. A single injection of PGF2alpha (15 mg, i.m.) was given, and an intravaginal MAP (60 mg) sponge was inserted for 6 days, on approximately Day 8 after ovulation, in 7 (experiment 1), 8 (experiment 2) or 11 (experiment 3) ultrasonographically monitored, cycling Western white-faced ewes; seven ewes (experiment 1) served as untreated controls. Blood samples were collected each day and also every 12 min for 6 h, halfway through the period of treatment with MAP (experiment 1), or every 4 h, from 1 day before to 1 day after sponging (experiment 2). Seventeen of 26 treated ewes (experiment 1, n = 6; experiment 2, n = 5; experiment 3, n = 6) ovulated 1 to 6 days after PGF2alpha, but this did not affect the emergence of ensuing follicular waves (experiments 1 and 2). These ovulations, confirmed by laparotomy and histological examinations of the ovaries (experiment 3), were not preceded by an increase in LH/FSH secretion and did not result in corpora lutea, as evidenced by transrectal ultrasonography and RIA of serum progesterone (experiments 1 and 2). Following the removal of MAP sponges, the mean ovulation rate was 3.1 +/- 0.4 in treated ewes and 2.0 +/- 0.3 in control ewes (experiment 1; P < 0.05). In experiments 1 and 2, the ovulation rate after treatment (3.1 +/- 0.4 and 2.8 +/- 0.4) was also greater than the pretreatment rate (1.9 +/- 0.3 and 1.9 +/- 0.1, respectively). Ovulations of follicles from two consecutive waves before ovulation were seen in five treated but only in two control ewes (experiment 1), and in seven ewes in experiment 2. There were no significant differences between the MAP-treated and control ewes in mean daily serum concentrations of FSH and estradiol, and no differences in the parameters of LH/FSH secretion, based on frequent blood sampling. Treatment of nonprolific Western white-faced ewes with PGF2alpha and MAP at midcycle changed follicular dynamics and increased ovulation rate by approximately 50%. These effects of MAP, in the absence of luteal progesterone, may not be mediated by changes in gonadotropin secretion.  相似文献   

10.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

11.
Progestagens are widely used to synchronise oestrous in sheep but the effects on follicular dynamics are not clear. We tested the hypothesis that when luteolysis occurs early during progestagen synchronisation prolonged growth of the ovulatory follicle will occur. Cyclic ewe lambs (40.0+/-0.3 kg) were divided into three groups: eight ewes (Long group) received a progestagen sponge (60 mg medroxyprogesterone acetate) from Days 5 to 19 after oestrous and eight ewes (Short group) received a progestagen sponge on Day 5 which was replaced on Day 10 and again on Day 15, and removed on Day 19 after oestrous. On Days 6 and 7, ewes in both groups received prostaglandin. A third group (n=5, Control) did not receive any treatment. The growth and development of follicles > or =2 mm in diameter were characterised using daily transrectal ultrasonography. On Day 18, blood samples were collected every 12 min for 8 h from five ewes in the Long and Short groups. Data were analysed by ANOVA. The maximum diameter and age (emergence to ovulation) of the ovulatory follicle was greater (P<0.01) in ewes in the Long group (7. 4+/-0.2 mm and 12.1+/-0.6 days) than in ewes in the Short group (6. 3+/-0.2 mm and 5.1+/-0.5 days) and Control group (6.3+/-0.4 mm and 6. 8+/-0.6 days). On Day 18 of the cycle, LH pulse frequency and oestradiol concentrations were greater (P<0.05) in ewes in the Long group (3.2+/-1.1 pulse per 8 h and 1.15+/-0.09 pg ml(-1)) than the Short group (0.8+/-0.4 pulses per 8 h and 0.54+/-0.08 pg ml(-1)).We suggest that the negative feedback efficacy of a long-term progestagen sponge decreased with time and led to an increase in LH pulse frequency and prolonged growth of the ovulatory follicle. We conclude that, in the absence of luteal progesterone, synchronisation with a single progestagen sponge for 14 days resulted in higher LH pulse frequency and ovulation of a persistent follicle with a larger maximum diameter, compared with controls.  相似文献   

12.
To evaluate the effects of incorporating medroxyprogesterone acetate (MAP) in an Ovsynch protocol, cyclic lactating dairy cows were assigned randomly to two groups (control and MAP, n=8 each). Ovsynch treatment (Day 0: GnRH, Day 7: PG, Day 9: GnRH) was initiated at random stages of the estrous cycle (control) and an intravaginal polyurethane sponge impregnated with 300mg of MAP was inserted intravaginally in the MAP group at Day 0 and removed at Day 7 of the Ovsynch protocol (MAP treatment). Ovaries were scanned daily from Day 0 until the second GnRH treatment on Day 9 and from then every 6h for 36 h. Milk samples were collected three times weekly starting 17 days before the initiation of treatment to determine the stage of the cycle at the beginning of the Ovsynch protocol. Blood samples were collected to monitor estradiol (E2), progesterone (P4), LH, and 15-ketodihydro-PGF(2alpha) (PGFM) by RIA. Response to the first GnRH treatment varied with the stage of the cycle at the time of initiation of treatment, as cows in metestrous and late diestrous did not ovulate. In cows ovulating, growth rate of the new follicle was not affected by the addition of MAP. No treatment differences were found in E2 concentrations which reached a maximum at Day 9, consistent with the maximum follicular size. At Day 7, cows with luteal concentrations of P4 had increased concentrations of PGFM, but cows with basal P4 did not show an active release of prostaglandins. There were no treatment differences in the ovulatory response to the second GnRH-induced ovulation, with 11 of the 16 cows ovulating between 16 and 32 h. The addition of MAP to the Ovsynch protocol could not mimic the normal high progesterone levels needed to prevent premature ovulations in those cows with premature CL regression.  相似文献   

13.
The use of hCG in cattle at breeding or at different times after breeding has been associated with extension in estrous cycle length among cows that do not become pregnant. The objective of this study was to determine whether the increase in estrous cycle length observed in hCG-treated cows that fail to become pregnant is due to changes in ovarian follicular dynamics. Twelve nonbred lactating cows were randomly assigned either to receive hCG on Day 7 of the cycle (Day 0 = day of estrus, n = 6) or to serve as controls (n = 6). Ultrasound scanning was conducted daily from Day 0 until the onset of the next ovulation to monitor follicular and corpus luteum (CL) dynamics. Blood samples were collected for progesterone analysis at each ultrasound session. Ovulation of the Day 7 follicle occurred in all 6 hCG-treated cows. The time of emergence of the second-wave of follicular growth was advanced in hCG-treated cows but was not statistically different (P > 0.05) from that of the control cows (10.8 +/- 0.3 vs 12.7 +/- 1.4 d). The mean diameter of the second-wave dominant follicle from Days 15 to 18 was not different (P > 0.05) between the treatment groups. However, the second-wave dominant follicle had a slower growth rate (0.8 vs 1.3 mm/d) among cows treated with hCG compared with that of the controls. The second-wave dominant follicle was the ovulatory follicle in 5 control cows, but only in 3 hCG-treated cows. The dominant follicle from the third wave ovulated in 1 control and in 3 hCG-treated cows. The lifespan of the spontaneous CL and the time to low progesterone levels (< 1 ng/ml) were not different between the control and hCG-treated cows. These results suggest an altered follicular dynamic but no extension in estrous cycle length when hCG is administered on Day 7 of the cycle in postpartum cows.  相似文献   

14.
In a previous study in our laboratory, treatment of non-prolific Western White Face (WWF) ewes with PGF(2 alpha) and intravaginal sponges containing medroxyprogesterone acetate (MAP) on approximately Day 8 of a cycle (Day 0 = first ovulation of the interovulatory interval) resulted in ovulations during the subsequent 6 days when MAP sponges were in place. Two experiments were performed on WWF ewes during anestrus to allow us to independently examine if such ovulations were due to the direct effects of PGF(2 alpha) on the ovary or to the effects of a rapid decrease in serum concentrations of progesterone at PGF(2 alpha)-induced luteolysis. Experiment 1: ewes fitted with MAP sponges for 6 days (n = 12) were injected with PGF(2 alpha) (n = 6; 15 mg im), or saline (n = 6) on the day of sponge insertion. Experiment 2: ewes received progesterone-releasing subcutaneous implants (n = 6) or empty implants (n = 5) for 5 days. Six hours prior to implant removal, all ewes received a MAP sponge, which remained in place for 6 days. Ewes from both experiments underwent ovarian ultrasonography and blood sampling once daily for 6 days before and twice daily for 6 days after sponge insertion. Additional blood samples were collected every 4 h during sponge treatment. Experiment 1: 4-6 (67%) PGF(2 alpha)-treated ewes ovulated approximately 1.5 days after PGF(2 alpha) injection; these ovulations were not preceded by estrus or a preovulatory surge release of LH, and resulted in transient corpora hemorrhagica (CH). The growth phase was longer (P < 0.05) and the growth rate slower (P < 0.05) in ovulating versus non-ovulating follicles in PGF(2 alpha)-treated ewes. Experiment 2: in ewes given progesterone implants, serum progesterone concentrations reached a peak (1.7 2 ng/mL; P < 0.001) on the day of implant removal and decreased to basal concentrations (<0.17 ng/mL; P < 0.001) within 24 h of implant removal. No ovulations occurred in either the treated or the control ewes. We concluded that ovulations occurring after PGF(2 alpha) injection, in the presence of a MAP sponge, could be due to a direct effect of PGF(2 alpha) at the ovarian level, rather than a sudden decline in circulating progesterone concentrations.  相似文献   

15.
Cyclic Spanish Merino ewes were treated on Day 13 of the estrous cycle with 12 mg, i.m., FSH-P in saline (n = 9) or propylene glycol (n = 24), currently with 100 micrograms, i.m., Cloprostenol (Day 0). From Day-6 to Day 0, the ewes were observed daily by transrectal ultrasonography, after Day 0, ultrasonography was performed every 12 h for 72 h. Sizes and locations of > or = 2 mm follicles were recorded at each observation. The ovulation rate was determined by laparoscopy on Day 7 after estrus. The number of ovulations ranged from 0 to 6 in ewes treated with FSH-P in saline and from 0 to 16 in ewes receiving FSH-P in propylene glycol (P < 0.05). In the latter group, the response was bimodally distributed; about half of the females had 1 ovulation, whereas the remainder had > 4 with a mean of 7 ovulations. The ovulation rate was associated with 2 characteristics of the largest follicle present at treatment (Day 0). First, if the largest follicle on Day 0 had not changed in diameter from Day-1 to Day 0, then 7 of 9 ewes had > 3 ovulations; if the largest follicle had either increased or decreased, only 8 of 24 ewes had > 3 ovulations (P < 0.05). Second, there was a linear trend (P < 0.07) for ovulation rate to decrease as the persistence of the largest follicle at treatment increased; no ewe in which the largest follicle on Day 0 remained present for more than 36 h ovulated more than 6 follicles. As with the ovulation rate, the numbers of large follicles on Days 1.5, 2 and 2.5 varied with the interaction of change in diameter of the largest follicle on Day 0 from Day-1 to Day 0 and with vehicle. In summary, the superovulatory response was affected by the change in diameter from Day-1 to Day 0 of the largest follicle on Day 0 and the period required for that follicle to regress after treatment with FSH-P and cloprostenol.  相似文献   

16.
The aim was to examine the effect of ovulation of aged follicles on embryo quality and fertility in ewes. In Experiment 1, ewes (n = 39) received a prostaglandin analogue on Day 6 of the cycle and then received either a progestagen sponge from Day 6 to 20 after estrus (Single sponge) or a progestagen sponge on Day 6 that was replaced on Day 11 and 16 and removed on Day 20 (Multiple sponges). In a subgroup of ewes, the growth of ovarian follicles was characterised using ultrasonography. Fertile rams were introduced 48 hours after sponge withdrawal; we slaughtered the ewes on Day 5 of pregnancy and recovered the embryos. The mean age of the ovulatory follicles was greater in ewes that received a single sponge compared with multiple sponges (8.7+/-0.8 days, range 4 to 14, versus 4.5+/-0.7 days, range 3 to 6; P<0.05). However, the groups did not differ (P>0.05) in ovulation rate (2.4+/-0.3 corporal lutea per ewe) or the proportion of good quality embryos recovered (71 to 82%; developed to the early morula stage or further). In Experiment 2, ewes (570 in total) received treatments similar to those in Experiment 1 but were kept until lambing. Ewes that received a single sponge came into heat earlier (P<0.05) than those that received multiple sponges, but > or = 97% of ewes in all groups (P>0.05) were bred by 48 to 72 hours after ram introduction. There was no difference (P>0.05) between groups for the proportion of ewes that lambed to first service (80 to 86%) or the number of lambs per ewe (1.94+/-0.08 lambs). We conclude that when luteolysis occurs at the beginning of progestagen synchronisation, ewes will ovulate aged follicles, but that compared to shorter duration follicles, these follicles produce oocytes that are equally competent to be fertilised and develop into good quality embryos and full-term lambs.  相似文献   

17.
The objective of this study was to monitor and compare follicle populations and follicular development in pregnant and nonpregnant sows from Day 3 to Day 20 after breeding. Twenty-four sows were paired within parity on the day of artificial insemination and were randomly allocated within pair for insemination with either killed (n=12) or live spermatozoa (n=12). All the sows were artificially inseminated with the pooled ejaculate of the same boar. From Day 3 through Day 20 post estrus, ovarian follicles were scanned daily by ultrasonography. Ultrasound images were recorded on videotape and were retrospectively analyzed. Follicles were mapped to indentify the existence of follicular waves. The follicles were then classified as small (< 3 mm), medium (3-5 mm), or large (>/=5 mm). Pregnancy diagnosis was performed on Day 21 by ultrasonography. Pregnant sows maintained a constant proportion of the follicle population in the small, medium and large follicle categories. However, in the nonpregnant sows, the proportion of follicles in the various size categories remained constant until Day 15. Thereafter, the proportion of small follicles decreased (P < 0.05) from Day 15 to 20, and the proportions of medium and large follicles increased (P < 0.05). The predictability of pregnancy status on Day 20 based on follicle populations in any of the 3 follicle categories was low. Moreover, there was no evidence of follicular waves during the estrous cycle or early pregnancy. In conclusion, the proportion of small follicles decreased while medium and large follicle increased from Day 15 through Day 20 of the estrous cycle, but not during a similar stage of pregnancy. This latter finding concurs with follicle recruitment from the pool of small follicles for ovulation following PGF2alpha secretion to induce luteolysis, which reduces progesterone concentrations and thereby allows for the stimulation of the pool of small follicles by gonadotropins.  相似文献   

18.
Vaginal secretions are an important source of chemical signals, which affect ewes' attractiveness. Moreover, alterations of vaginal flora reduce sexual attractiveness of estrous ewes. As intravaginal sponges containing progestagens (widely used for estrous synchronization) affect vaginal flora, our aims were to determine if estrous ewes pretreated with intravaginal sponges were less attractive than ewes displaying spontaneous estrus, and if the addition of antibiotic to the sponge mitigated the decreased sexual attractiveness. Seventy-two estrous ewes were used in experiment 1: in 36, estrus was synchronized with commercial intravaginal sponges (50 mg medroxyprogesterone acetate for 14 days, group MAP1), whereas the other 36 were given a PGF2α analogue 19 to 20 days earlier and displayed spontaneous estrus (group C1). In experiment 2, 72 ewes were treated with intravaginal sponges for 14 days; for 36 ewes, the sponges contained 0.02 mg oxytetracycline (group Ox), whereas there was no antibiotic in the sponges for the remaining 36 ewes (group MAP2). In both experiments, sexual attractiveness was determined in 12 groups of six estrous ewes (three MAP1 vs. three C1, and three MAP2 vs. three Ox for Experiments 1 and 2, respectively) located in a 4 × 4 m pen. Courting and mating time that each ram spent with each ewe was recorded. After 5 min, the ewe with which the ram spent more time (most attractive ewe, ranked one, scale one to six) was taken out from the pen. The procedure was repeated until the ram ranked all six ewes, and repeated in the 12 groups in both experiments. In experiment 1, C1 ewes were more attractive than MAP1 ewes (ranks: 2.9 ± 0.3 vs. 4.1 ± 0.3, mean ± SEM, respectively; P < 0.002). In experiment 2, sexual attractiveness of MAP2 and Ox ewes was similar (3.5 ± 0.3 vs. 3.4 ± 0.3, respectively). We concluded that the use of intravaginal sponges impregnated with medroxyprogesterone acetate negatively affected ewes' sexual attractiveness, but this decrease was not mitigated by inclusion of a local antibiotic.  相似文献   

19.
Computer-assisted image analysis was used to evaluate ultrasound images of bovine ovarian follicles. The ovaries of 8 sexually mature heifers were examined daily by transrectal ultrasonography for 2 estrous cycles. Ultrasonographic examinations of the ovaries were then videotaped, and the dominant and subordinate follicles of successive waves were individually identified and monitored. Recorded images of the dominant anovulatory follicle of the first wave (n = 15) and the ovulatory follicle of the last wave (n = 15) of the estrous cycle were subsequently digitized for computer analysis of echotexture (mean pixel value and pixel heterogeneity). Regions of the image spanning the breadth of the follicle wall were selected, and image analysis revealed that mean pixel value of the dominant anovulatory follicle changed over time (P = 0.0005). Mean pixel value decreased (P = 0.0005) dramatically during the early static phase (Days 6 to 8, Day 0 = day of ovulation), increased (P = 0.0005) at the onset of the regressing phase (Day 12), and reached maximal levels (P = 0.0005) on Day 14. Similarly, image echotexture of the ovulatory follicle revealed a time-dependent effect (P = 0.0001) due to a rapid decrease in mean pixel values between 7 and 4 d before ovulation, followed by an increase until the day before ovulation. The echotexture of images of the follicular antrum were also evaluated and with regard to the dominant anovulatory follicle, a time-dependent effect was not detected for mean pixel value (P = 0.62) but was observed for pixel heterogeneity (P = 0.02). In addition, there was a positive correlation between mean pixel value and heterogeneity (r = 0.61, P = 0.0001). Heterogeneity initially decreased (P = 0.02) and remained low until the emergence of the second follicular wave (mean Day 9). Values subsequently increased and became variable during the late static and regressing phases (> Day 9). Mean pixel value of the antrum of the dominant ovulatory follicle increased (P = 0.0001) as the day of ovulation approached. Heterogeneity did not change (P = 0.14), nor was there any correlation between mean pixel value and heterogeneity for the antrum of the ovulatory follicle (r = 0.06, P = 0.49). We concluded that changes in echotexture (mean pixel value and heterogeneity) of bovine ovarian follicles assessed by computer analysis of ultrasound images were temporally related to functional status (i.e., anovulatory versus ovulatory; growing, static or regressing). The results were strongly supportive of the concept that ultrasonographically detected image attributes are a reflection of physiologic status.  相似文献   

20.
The current study characterized the timing of emergence of ovulatory follicles during the follicular phase of the estrous cycle in polyovulatory does and assessed whether selection may influence ovulation rate through differences in ovarian follicular dynamics, by characterizing preovulatory follicular emergence and growth in two ecotypes of Neuquen-Criollo Argentinean goats (Short-Hair, n=11 and Long-Hair, n=9). During the breeding season, the time of estrus was synchronized in all does with two doses of a prostaglandin analogue. Ovarian laparoscopies were performed on days 17 and 19 after the induced estrus (day 0) and 7-15 h after the beginning of the subsequent estrus. Results indicate that both ecotypes of goats have common features in the ovarian follicular population and in the patterns of preovulatory follicular enlargement. In all the goats, most of the preovulatory follicles arose from the pool of follicles present in the ovary between days 17 and 19 of the estrous cycle. These follicles were all larger than 2mm at emergence, being the largest growing follicle present in the ovaries on days 17 and 19 in 56.5 and 78.6% of the does, respectively. The appearance of new follicles remained unaffected, while the mean number of small growing follicles decreased (P<0.05) during the follicular phase, indicating that preovulatory follicles do not suppress the emergence of new follicles but inhibit the growth of small follicles. A separate analysis of single and double ovulating does showed that 75% of the second ovulatory follicles in polyovulatory goats was present on the ovarian surface between days 17 and 19 of the estrous cycle, but appeared later in the other 25% of the estrous cycles. These findings support the hypothesis that follicular dominance effects are exerted during the preovulatory period, when the growth of follicles other than the ovulatory is inhibited, and that increases in ovulation rate in small ruminants are related to a reduced incidence of follicular atresia and an extended period of ovulatory follicle recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号