首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of sugar transport in Neurospora crassa   总被引:13,自引:11,他引:2       下载免费PDF全文
Sugar uptake systems in Neurospora crassa are catabolically repressed by glucose. Synthesis of a low K(m) glucose uptake system (system II) in Neurospora is derepressed during starvation for an externally supplied source of carbon and energy. Fasting also results in the derepression of uptake systems for fructose, galactose, and lactose. In contrast to the repression observed when cells were grown on glucose, sucrose, or fructose, system II was not repressed by growth on tryptone and casein hydrolysate. System II was inactivated in the presence of 0.1 m glucose and glucose plus cycloheximide but not by cycloheximide alone. Inactivation followed first-order kinetics with a half-time of 40 min. The addition of glycerol to the uptake medium had no significant effect on the kinetics of 3-0-methyl glucose uptake, suggesting that the system was not feedback inhibitable by catabolites of glycerol metabolism.  相似文献   

2.
Addition of casein hydrolysate to suspensions of washed, nonpigmented, nonproliferating Serratia marcescens incubating at 27 C induced biosynthesis of prodigiosin. Four amino acids of casein hydrolysate, dl-aspartic acid, l-glutamic acid, l-proline, and l-alanine caused formation of pigment when added individually. dl-Ornithine also was effective. Optimal concentrations for maximal pigmentation were 5 to 10 mg/ml; at these high concentrations, d-serine also induced biosynthesis of some prodigiosin. dl-Alanine and -ornithine were as effective as the l-iosomers, but l-glutamic acid and l-proline gave better responses than their racemic mixtures. Kinetics of prodigiosin biosynthesis after addition of dl-alanine (20 mg/ml) were similar to those of cells suspended in 0.2% casein hydrolysate. The other amino acids were less effective. Addition of 5 mg of dl-alanine or casein hydrolysate per ml to minimal medium increased by 30% the amount of prodigiosin formed by growing cells after incubation for 7 days at 27 C. Cultures grown for 7 days at 27 C in 0.2% casein hydrolsate formed more prodigiosin than did suspensions of nonproliferating cells containing individual amino acids or casein hydrolysate. However, more pigment was produced by cells suspended in l-alanine (5 mg/ml) or l-proline (10 mg/ml) than when suspended in 0.4% natural or synthetic casein hydrolysate. Filtrates from suspensions of nonproliferating cells forming pigment in l-proline induced more rapid formation of prodigiosin, but filtrates from suspensions in dl-alanine did not. The data supported the hypothesis that pyrrole groups of prodigiosin may be synthesized from 5-carbon amino acids such as proline, ornithine, aspartic, and glutamic acids, but the role of alanine is unknown.  相似文献   

3.
Lysates of Escherichia coli Ymel obtained from cultures grown in the absence of tryptophan in minimal medium supplemented with 0.1% casein hydrolysate show an approximate fivefold increase in steady-state specific activity of both anthranilate synthetase and tryptophan synthetase A protein relative to cultures grown in nonsupplemented medium. In the presence of repressing levels of exogenous tryptophan, growth of cultures in casein hydrolysate-supplemented medium results in a noncoordinate enhancement of repression of 10-fold for anthranilate synthetase and twofold for tryptophan synthetase A protein. Similar, but less pronounced, effects are shown for strain W3110. Strains possessing tryptophan regulator gene mutations do not exhibit this first effect, but do yield an approximate twofold decrease in specific activity of both enzymes when grown in medium supplemented with tryptophan and casein hydrolysate. A stimulation of derepression of both enzymes in strain Ymel equivalent to that induced by casein hydrolysate can be reproduced by growth in minimal medium supplemented with threonine, phenylalanine, tyrosine, serine, glutamic acid, and glutamine. Doubling time in this medium is not significantly different from that in minimal medium. An enhancement of repression which partially mimics that observed on growth in medium supplemented with tryptophan plus casein hydrolysate is obtained when Ymel is grown on medium supplemented with tryptophan plus methionine. Threonine or phenylalanine plus tyrosine as separate medium supplements are independently capable of producing a 1.4-fold or 3.4-fold stimulation, respectively, but in combination only the phenylalanine plus tyrosine effect is manifested unless serine and glutamic acid or glutamine are included. Our data show that expression of the tryptophan biosynthetic enzymes can be significantly influenced in vivo as a result of growth in medium supplemented with a variety of amino acids.  相似文献   

4.
The blue-green alga Fremyella diplosiphon Drouet can be grown in the dark on a medium consisting of mineral salts, glucose, and casein hydrolysate. A variety of organic substances was tested for effectiveness as a carbon or nitrogen source. The most effective individual compounds were glucose and citrulline, respectively. A daily irradiation of 5 min green light depresses the dark growth rate. The effect of green is reversible by brief irradiation with red light, and multiple photoreversibility was demonstrated. This green, red-reversible effect on dark growth rate may be related to other photomorphogenic responses to brief irradiation with green and red in the Cyanophyta. A master photoreversible pigment similar to phytochrome is a possible photoreceptor for these effects.  相似文献   

5.
We had demonstrated that a peptic hydrolysate of guanidinated casein that is made from casein by the conversion of lysine to homoarginine stimulated pancreatic exocrine secretion in rats with chronic bile-pancreatic juice (BPJ) diversion from the proximal small intestine. This modified protein also stimulated cholecystokinin (CCK) release from dispersed rat intestinal cells. In this study, we found that guanidinated casein hydrolysate stimulates CCK release in chronic BPJ-diverted rats with cholinergic control blocked by atropine. Intraduodenal guanidinated casein hydrolysate increased portal plasma CCK concentration and pancreatic secretion in atropine-treated BPJ-diverted rats. In contrast, the portal plasma CCK concentration was not increased by intact casein hydrolysate. We conclude that guanidinated casein hydrolysate directly stimulates CCK release from the intestine via some cholinergic-independent mechanism, and an increase of the pancreatic exocrine secretion is regulated by CCK released by guanidinated casein hydrolysate. A guanidyl residue is likely to be involved in this control.  相似文献   

6.
Maximal amounts of prodigiosin were synthesized in either minimal or complete medium after incubation of cultures at 27 C for 7 days. Biosynthesis of prodigiosin began earlier and the range of temperature for formation was greater in complete medium. No prodigiosin was formed in either medium when cultures were incubated at 38 C; however, after a shift to 27 C, pigmentation ensued, provided the period of incubation at 38 C was not longer than 36 hr for minimal medium or 48 hr for complete medium. Washed, nonpigmented cells grown in either medium at 38 C for 72 hr could synthesize prodigiosin when suspended in saline at 27 C when casein hydrolysate was added. These suspensions produced less prodigiosin at a slower rate than did cultures growing in casein hydrolysate at 27 C without prior incubation at 38 C. Optimal concentration of casein hydrolysate for pigment formation by suspensions was 0.4%; optimal temperature was 27 C. Anaerobic incubation, shift back to 38 C, killing cells by heating, or chloramphenicol (25 mug/ml) inhibited pigmentation. Suspensions of washed cells forming pigment reached pH 8.0 to 8.3 rapidly and maintained this pH throughout incubation for 7 days. Measurements of viable count and of protein, plus other data, indicated that cellular multiplication did not occur in suspensions of washed cells during pigment formation. By this procedure utilizing a shift down in temperature, biosynthesis of prodigiosin by washed cells could be separated from multiplication of bacteria.  相似文献   

7.
The R and M phase variants of Rhodobacter sphaeroides and Rhodobacter capsulatus were isolated. The growth rates in the dark and in the light in glucose-containing media were much higher for the Rba. sphaeroides R variant than for the M variant. For the Rba. capsulatus R and M variants, growth rates in the dark and in the light in fructose- or glucose-containing media differed insignificantly. The cells of Rba. sphaeroides and Rba. capsulatus phase variants growing in media with glucose and fructose exhibited differences in activity of the key enzymes of the Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways. The oxidative pentose phosphate pathway (PPP) does not participate in glucose and fructose metabolism in the studied bacteria. Specific activity of the ED pathway enzymes was higher in dark-grown R and M variants of both Rba. sphaeroides and Rba. capsulatus than in the cells grown under light. Specific activity of the EMP enzymes was higher for the R and M variants of both cultures grown in the light than for those grown in the dark. Activities of the 2-keto-3-deoxy-6-phosphogluconate and fructose bisphosphate aldolases, the key enzymes of the ED and EMP pathways in Rba. sphaeroides M variant grown in the medium with glucose in the light or in the dark, were approximately twice those of the R variant. In the medium with fructose activities of these enzymes in both R and M variants did not change significantly depending on growth conditions. Activities of the enzymes of the EMP and ED pathways in the extracts of the Rba. capsulatus R and M cells grown with glucose or fructose did not change significantly. Cultivation of Rba. sphaeroides and Rba. capsulatus phase variants in the medium with fructose resulted in a considerably increased synthesis of 1-phosphofructokinase. Induction of 1-phosphofructokinase synthesis in Rba. sphaeroides occurred only in the light, while in Rba. capsulatus induction of this enzyme in the medium with fructose was observed both in the dark and in the light. Thus, under aerobic conditions in the dark the phase variants of both bacteria probably assimilated glucose and fructose via the ED pathway, while in the light the EMP pathway was active.  相似文献   

8.
L-asparaginase synthesis by Escherichia coli B   总被引:2,自引:0,他引:2  
We have studied the influence of strain of organism, temperature, and medium on the production of the antileukemic intracellular enzyme L-asparaginase by E. coli B grown in shaken flasks. Five strains of E. coli B exhibited wide differences in their capacities to synthesize the EC-2 form of L-asparaginase active against leukemia. For the most productive strain, when grown in a casein hydrolysate medium, maximal production of L-asparaginase occurred at 25°C. At this temperature, the organism required glycerol, glucose, or other mono-saccharides to synthesize L-asparaginase. Synthesis was stimulated when glycerol was used in place of glucose, but not in its presence. The effect of glycerol on L-asparaginase synthesis was most evident when the cells were grown at 37°C, rather than at 25°C. With 0.25% glucose, cells had a specific activity of 409 I.U./g; with glycerol cells had a specific activity of 553 I.U./g. At 25°C, both cell and L-asparaginase synthesis were increased by the use of 0.25% glycerol resulting in only a slight increase in specific activity of the cells. The addition of zinc, copper, manganese, iron, L-asparagine, L-glutamine, or L-aspartic acid had no effect on L-asparaginase synthesis in the casein hydrolysate medium. L-aspartic acid (10?2 M) enhanced L-asparaginase synthesis in a synthetic medium that lacked these metals or L-asparagine, L-glutamine, or L-aspartic acid; cells grown under these conditions had a specific activity of 90 I.U./g. In the casein hydrolysate medium, cell morphology was correlated with temperature of incubation.  相似文献   

9.
The metabolism of various organic substrates by suspensions of Mycoplasma mycoides subsp. mycoides in a salts solution was followed by microcalorimetry. Enthalpy changes associated with metabolism were in good agreement with theoretical values. Substrate utilization showed Michaelis kinetics, allowing saturation constants (Km) and maximum specific rates of substrate utilization (Vmax) to be determined. In cells grown on a complex medium containing glucose, Km values were: glucose, fructose, N-acetylglucosamine, glycerol and pyruvate, less than 5 microM; lactate, 20 microM; glucosamine, 130 microns, and mannose, 1 mM. Values of Vmax for glycerol, pyruvate and lactate were similar and approximately twice those for glucose, mannose, glucosamine and N-acetylglucosamine; Vmax for fructose was one-quarter of that for glucose. In cells grown on complex medium in which glucose was replaced by mannose, glucosamine or N-acetylglucosamine, Vmax and Km for the respective growth sugars and for glucose were not significantly affected. However, in cells grown in the presence of fructose, Vmax for fructose increased to the value observed for glucose. It is suggested that M. mycoides is adapted to, and is constitutive for, the utilization of a single sugar (glucose), and a single amino sugar (N-acetylglucosamine), but that in the presence of fructose a fructose-utilizing pathway is induced.  相似文献   

10.
Growth of Streptomyces viridochromogenes on a solid glycerol-NH4NO3 salts medium was accompanied by the formation of aerial mycelia and spores. Adding 0.5% or more casein hydrolysate to the medium stimulated growth while completely repressing the formation of aerial mycelia and spores. This repression was temporary, as evidenced by the fact that transfer of the organisms to media not containing casein hydrolysate resulted in the appearance of aerial mycelia and spores. The effects of individual amino acids were tested. Glycine retarded growth and repressed formation of both aerial mycelia and spores. L-Aspartic acid, L-glutamic acid, and L-histidine stimulated or had little effect on growth and repressed formation of spores but not aerial mycelia. Repression by casein hydrolysate could not be attributed to the carbon/nitrogen ratio or the pH of the medium. Adding 1.25 to 2.5 mM adenine to the medium caused a reversal of the casein hydrolysate repression of aerial mycelium formation but did not reverse repression of sporulation. Dimethyladenine and 8-azaguanine had an effect similar to that of adenine, but a variety of other purine or pyrimidine derivatives had no effect on casein hydrolysate repression. The repression of aerial mycelium and spore formation by casein hydrolysate occurred only in media containing 15 mM or more phosphate. Aerial mycelia and spores were formed in media containing casein hydrolysate and 3 mM or less phosphate.  相似文献   

11.
Cells of free-living nitrogen-fixing Nostoc PCC 73102, a filamentous heterocystous cyanobacterium originally isolated from coralloid roots of the cycad Macrozamia. were examined for the presence of ornithine carbamoyl transferase (OCT) by native-PAGE/in situ activity stain, and SDS-PAGE/Western immunoblots. Transmission electron microscopy and immunocytological labeling were used to study the cellular and subcellular distribution of OCT in the Nostoc cells. Moreover, the effects of photoautotrophic and dark heterotrophic growth metabolism on growth, nitrogenase activity and in vivo citrulline synthesis were investigated. PAGE in combination with in situ activity staining demonstrated an in vitro active OCT with a molecular weight of approximately 80 kDa. SDS-PAGE/Western immunoblots revealed that a polypeptide with a molecular weight of approximately 38 kDa was immunologically related to OCT purified from pea (Pisum sativum L. cv. Alaska). Immunolocalization demonstrated that the OCT protein was located both in vegetative cells and heterocysts. Using the particle analysis of an image processor, the labeling associated with the photosynthetic vegetative cells was calculated to be 75.6 (± 5.5) gold particles μm?2 compared with 62.0 (± 7.5) in the nitrogen-fixing heterocysts. Glucose and fructose stimulated both cyanobacterial growth and nitrogenase activity in light and darkness. Addition of exogenous ornithine decreased nitrogenase activity. In light grown cells, additions of glucose and fructose in combination with ornithine not only stimulated growth and nitrogenase activity but also in vivo citrulline synthesis, measured as 14CO2-fixation into [14C]-citrulline. In darkness no stimulation was observed on in vivo citrulline synthesis. The substantial stimulation of nitrogenase activity by additions of external glucose and fructose, both in the light and in darkness, was not followed by a simultaneous stimulation of in vivo citrulline synthesis.  相似文献   

12.
The levels of glycogen, free trehalose, and lipid-bound trehalose were compared in Mycobacterium smegmatis grown under various conditions of nitrogen limitation. In a mineral salts medium supplemented with yeast extract and containing fructose as the carbon source, the accumulation of glycogen increased dramatically as the NH(4)Cl content of the medium was lowered. However, levels of free trehalose remained relatively constant. Cells were grown in low nitrogen medium and were then shifted to medium containing high nitrogen. Under these conditions, there was a rapid accumulation of glycogen in low nitrogen, and this glycogen was rapidly depleted when cells were placed in high nitrogen medium. Again the concentration of free trehalose remained fairly constant. However, when cells were grown in low nitrogen medium with [(14)C]fructose and then transferred to high nitrogen medium with unlabeled fructose, the specific radioactivity (counts per minute per micromole) of the free trehalose fell immediately, indicating that it was being synthesized and turned over continually. On the other hand, the specific radioactivity of the glycogen and bound trehalose declined much more slowly, suggesting that these two compounds were not turning over as rapidly or were being synthesized at a much slower rate. Experiments on the incorporation of [(14)C]fructose into glycogen and trehalose indicated that cells in high nitrogen medium synthesized much less glycogen than those in low nitrogen. However, synthesis of both free trehalose and bound trehalose was the same in both cases. The specific enzymatic activities of the glycogen synthetase and the trehalose phosphate synthetase varied somewhat from one growth condition to another, but there was no correlation between enzymatic activity and the amount of glycogen or trehalose, suggesting that changes in glycogen levels were not due to increased synthetic capacity. The glycogen synthetase was purified about 35-fold and its properties were examined. This enzyme was specific for adenosine diphosphate glucose as the glucosyl donor.  相似文献   

13.
Nitrogenase (=acetylene-reducing activity) was followed during photoautotrophic growth of Anabaena variabilis (ATCC 29413). When cell density increased during growth, (1) inhibition of light-dependent activity by DCMU, an inhibitor of photosynthesis, increased, and (2) nitrogenase activity in the dark decreased. Addition of fructose stabilized dark activity and alleviated the DCMU effect in cultures of high cell density.The resistance of nitrogenase towards oxygen inactivation decreased after transfer of autotrophically grown cells into the dark at subsequent stages of increasing culture density. The inactivation was prevented by addition of fructose. Recovery of acetylene-reducing activity in the light, and in the dark with fructose present, was suppressed by ammonia or chloramphenicol. In the light, also DCMU abolished recovery.To prove whether the observed effects were related to a lack of photosynthetic storage products, glycogen of filaments was extracted and assayed enzymatically. The glycogen content of cells was highest 10 h after inoculation, while light-dependent nitrogenase activity was at its maximum about 24 h after inoculation. Glycogen decreased markedly as growth proceeded and dropped sharply when the cells were transferred to darkness. Thus, when C-supply (by photosynthesis or added fructose) was not effective, the glycogen content of filaments determined the activity of nitrogenase and its stability against oxygen. In cells lacking glycogen, nitrogenase activity recovered only when carbohydrates were supplied by exogenously added fructose or by photosynthesis.Abbreviations Chl chlorophyll a - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

14.
15.
The response pattern of Saccharomyces carlsbergensis (ATCC 9080) to pantothenic acid in Atkin's medium was changed dramatically by adding small amounts of casein hydrolysate (0.032 to 0.32 mg/ml) to the assay medium. Under static, mildly anaerobic conditions, growth at low pantothenic acid levels was reduced by 54 to 69%, whereas at saturating or near saturating pantothenate concentrations marked stimulation of growth (up to 41%) was observed. Under aerobic conditions, inhibition but not stimulation of growth occurred. It is recommended that Atkin's medium for the assay of pantothenic acid with S. carlsbergensis (ATCC 9080) be modified to include 0.6% acid-hydrolyzed casein (Vitamin Free Casamino Acids, Difco) to prevent erroneous growth responses, which may result if significant amounts of amino acids are present in natural materials being assayed for this vitamin.  相似文献   

16.
Different carbohydrates were investigated for somatic embryo development of black spruce and red spruce. They were tested in a basal maturation medium consisting of Litvay's salts at half-strength containing 1 g l-1 glutamine, 1 g l-1 casein hydrolysate, 7.5 M abscisic acid, and 0.9% Difco Bacto-agar. A comparison of different sucrose concentrations showed that 6% was optimal for embryo development. Among the nine carbohydrates tested, sucrose, fructose, glucose, maltose, and cellobiose supported embryo development while arabinose, mannitol, myo-inositol, and sorbitol did not. A comparison of sucrose, glucose, and fructose at three concentrations showed that the general pattern of response for both species followed concentration expressed as a percentage, independent of the molarity of carbohydrate in the medium. Interspecific differences were observed concerning carbohydrate requirements. For red spruce, 6% fructose was found best for embryo development, while no such preference was observed for black spruce. No significant difference was observed in the number of embryos produced with 6% sucrose or 3% sucrose plus an equimolar concentration of either mannitol, sorbitol, or myo-inositol in the maturation medium, suggesting that the effect of the carbohydrate on the maturation was partly osmotic.  相似文献   

17.
Uptake of [14C]choline upon hyperosmotic stress of exponential-phase Staphylococcus aureus cultures in a complex medium occurred after a delay of 2.5 to 3.5 h. This uptake could be prevented by chloramphenicol, suggesting that it occurred via an inducible transport system. Radioactivity from [14C]choline was accumulated as [14C]glycine betaine. However, neither choline nor glycine betaine could act as the major carbon and energy source for the organism, suggesting that choline was not metabolized beyond glycine betaine. Assay of choline transport activity in cells grown under different conditions in defined media revealed that osmotic stress was mainly responsible for the induction, but choline gave a further increase in induction. The system was not induced in anaerobically grown cells. Choline transport activity was repressed by glycine betaine and proline betaine, suggesting that these compounds are corepressors. Choline transport activity was not induced in cells osmotically stressed by 1 M potassium phosphate or 0.5 M sodium phosphate, but was induced in cells grown in low-phosphate medium in the absence of osmotic stress. This suggests that there is a connection between the phosphate and osmotic stress regulons. Choline transport was energy and Na+ dependent and had a Km of 46 microM and a maximum rate of transport (Vmax) of 54 nmol/min/mg (dry weight). The results of competition studies suggested that N-methyl and an alcohol group or aldehyde groups at the ends of the molecule were important in its recognition by the system. Glycine betaine was not a highly effective competitor, suggesting that its transport system and the choline transport system were distinct from each other. Choline transport was highly susceptible to a variety of inhibitors, which may be related to the greater dependence on respiratory metabolism of cells grown in the presence of high NaC1 concentrations.  相似文献   

18.
The clostridia are a diverse group of obligately anaerobic bacteria with potential for the fermentative production of fuels, solvents and other chemicals. Several species exhibit a broad substrate range, but there have been few studies of the mechanisms involved in regulation of uptake and metabolism of fermentable carbohydrates.Clostridium beijerinckii(formerlyClostridium acetobutylicum) NCIMB 8052 exhibited transport activity for hexoses and hexitols. Glucose-grown cells transported glucose and fructose, but not galactose, glucitol (sorbitol) or mannitol, transport of which was induced by growth on the respective substrates. Phosphorylation of glucose, fructose, glucitol and mannitol by cell extracts was supported by phosphoenolpyruvate, indicating the involvement of a phosphotransferase system in uptake of these substrates. Fructose phosphorylation was also demonstrated by isolated membranes in the presence of fructose 1-phosphate, thus identifying this derivative as the product of the fructose phosphotransferase system. The presence of phosphotransferase activities in extracts prepared from cells grown on different carbon sources correlated with transport activities in whole cells, and the pattern of transport activities reflected the substrate preference of cells growing in the presence of glucose and another carbon source. Thus, glucose and fructose were co-metabolised, while utilization of glucitol was prevented by glucose, even in cells which were previously induced for glucitol metabolism. Of the substrates examined, only galactose appeared to be transported by a non-phosphotransferase mechanism, since a significant rate of phosphorylation of this sugar was supported by ATP rather than phosphoenolpyruvate.  相似文献   

19.
Production and characteristics of hemolysins of Escherichia coli   总被引:14,自引:2,他引:12  
Snyder, Irvin S. (University of Iowa, Iowa City), and Nancy A. Koch. Production and characteristics of hemolysins of Escherichia coli. J. Bacteriol. 91:763-767. 1996.-Filterable and nonfilterable hemolysins were produced by Escherichia coli in beef-heart infusion, casein hydrolysate, and chemically defined media. Differences were found among the three media in the time of appearance and in the relationship between production of these two hemolysins. The nonfilterable hemolysin produced in the three media, as well as the filterable hemolysin produced in the beef-heart infusion medium, were destroyed in 1 hr at 56 C. The filterable hemolysin produced in the casein hydrolysate and chemically defined media was unaffected by exposure to 56 C for 1 hr. Formalin inactivated the hemolysins produced in all three media. The optimal pH for activity of the nonfilterable hemolysin varied with time of production, whereas the optimal pH for the filterable hemolysin was constant. Certain carbohydrates were required for the production of filterable hemolysin by E. coli grown in casein hydrolysate and chemically defined media.  相似文献   

20.
Carbohydrate metabolism by the oral bacterium Streptococcus sanguis NCTC 7865 was studied using cells grown in a chemostat at pH 7.0 under glucose or amino acid limitation (glucose excess) over a range of growth rates (D = 0.05 h-1-0.4 h-1). A mixed pattern of fermentation products was always produced although higher concentrations of lactate were formed under amino acid limitation. Analysis of culture filtrates showed that arginine was depleted from the medium under all conditions of growth; a further supplement of 10 mM-arginine was also consumed but did not affect cell yields, suggesting that it was not limiting growth. Except at the slowest growth rate (D = 0.05 h-1) under glucose limitation, the activity of the glucose phosphotransferase (PTS) system was insufficient to account for the glucose consumed during growth, emphasizing the importance of an alternative method of hexose transport in the metabolism of oral streptococci. The PTS for a number of sugars was constitutive in S. sanguis NCTC 7865 and, even though the cells were grown in the presence of glucose, the activity of the sucrose-PTS was highest. The glycolytic activity of cells harvested from the chemostat was affected by the substrate, the pH of the environment, and their original conditions of growth. Glucose-limited cells produced more acid than those grown under conditions of glucose excess; at slow growth rates, in particular, greater activities were obtained with sucrose compared with glucose or fructose. Maximum rates of glycolytic activity were obtained at pH 8.0 (except for cells grown at D = 0.4 h-1 where values were highest at pH 7.0), while slow-growing, amino acid-limited cells could not metabolize at pH 5.0. These results are discussed in terms of their possible significance in the ecology of dental plaque and the possible involvement of these bacteria in the initiation but not the clinical progression of a carious lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号