首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DOXP-reductoisomerase (DXR) is a validated target for the development of antimalarial drugs to address the increase in resistant strains of Plasmodium falciparum. Series of aryl- and heteroarylcarbamoylphosphonic acids, their diethyl esters and disodium salts have been prepared as analogues of the potent DXR inhibitor fosmidomycin. The effects of the carboxamide N-substituents and the length of the methylene linker have been explored using in silico docking studies, saturation transfer difference NMR spectroscopy and enzyme inhibition assays using both EcDXR and PfDXR. These studies indicate an optimal linker length of two methylene units and have confirmed the importance of an additional binding pocket in the PfDXR active site. Insights into the constraints of the PfDXR binding site provide additional scope for the rational design of DXR inhibitors with increased ligand–receptor interactions.  相似文献   

2.
The diethyl esters and disodium salts of a range of heteroarylcarbamoylphosphonic acids have been prepared and evaluated as analogues of the highly active DOXP-reductoisomerase (DXR) inhibitor, fosmidomycin. Computer-simulated docking studies, Saturation Transfer Difference (STD) NMR analysis and enzyme inhibition assays have been used to explore enzyme-binding and -inhibition potential, while in silico analysis of the DXR active site has highlighted the importance of including a well-parameterised metal co-factor in docking studies and has revealed the availability of an additional binding pocket to guide future drug design.  相似文献   

3.
Analogs of the antibiotic fosmidomycin, an inhibitor of the methylerythritol phosphate pathway to isoprenoids, were synthesized and evaluated against the recombinant Synechocystis sp. PCC6803 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR). Fosfoxacin, the phosphate analog of fosmidomycin, and its acetyl congener were found to be more potent inhibitors of DXR than fosmidomycin.  相似文献   

4.
This work is focused on the design of new antimicrobial drugs and on the development of lipophilic inhibitors of the DXR, the second enzyme of the MEP pathway for the biosynthesis of isoprene units in most bacteria, by replacing the phosphonate group of fosmidomycin derivatives by a tetrazoyl moiety capable of multiple hydrogen bonding. The N- and C-substituted tetrazole analogues of phosphonohydroxamate inhibitors were synthesized and tested on the DXR of Escherichia coli. This work points out the hypothesis that the phosphonate/phosphate recognition site might be too rigid to accommodate other functional groups.  相似文献   

5.
The key enzyme in the non-mevalonate pathway of isoprenoid biosynthesis, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) has been shown to be the target enzyme of fosmidomycin, an antimalarial, antibacterial and herbicidal compound. Here we report the crystal structure of selenomethionine-labelled Escherichia coli DXR in a ternary complex with NADPH and fosmidomycin at 2.2 A resolution. The structure reveals a considerable conformational rearrangement upon fosmidomycin binding and provides insights into the slow, tight binding inhibition mode of the inhibitor. Although the inhibitor displays an unusual non-metal mediated mode of inhibition, which is an artefact most likely due to the low metal affinity of DXR at the pH used for crystallization, the structural data add valuable information for the rational design of novel DXR inhibitors. Using this structure together with the published structural data and the 1.9 A crystal structure of DXR in a ternary complex with NADPH and the substrate 1-deoxy-D-xylulose 5-phosphate, a model for the physiologically relevant tight-binding mode of inhibition is proposed. The structure of the substrate complex must be interpreted with caution due to the presence of a second diastereomer in the active site.  相似文献   

6.
Zhang B  Watts KM  Hodge D  Kemp LM  Hunstad DA  Hicks LM  Odom AR 《Biochemistry》2011,50(17):3570-3577
Antimicrobial drug resistance is an urgent problem in the control and treatment of many of the world's most serious infections, including Plasmodium falciparum malaria, tuberculosis, and healthcare-associated infections with Gram-negative bacteria. Because the non-mevalonate pathway of isoprenoid biosynthesis is essential in eubacteria and P. falciparum and this pathway is not present in humans, there is great interest in targeting the enzymes of non-mevalonate metabolism for antibacterial and antiparasitic drug development. Fosmidomycin is a broad-spectrum antimicrobial agent currently in clinical trials of combination therapies for the treatment of malaria. In vitro, fosmidomycin is known to inhibit the deoxyxylulose phosphate reductoisomerase (DXR) enzyme of isoprenoid biosynthesis from multiple pathogenic organisms. To define the in vivo metabolic response to fosmidomycin, we developed a novel mass spectrometry method to quantitate six metabolites of non-mevalonate isoprenoid metabolism from complex biological samples. Using this technique, we validate that the biological effects of fosmidomycin are mediated through blockade of de novo isoprenoid biosynthesis in both P. falciparum malaria parasites and Escherichia coli bacteria: in both organisms, metabolic profiling demonstrated a block of isoprenoid metabolism following fosmidomycin treatment, and growth inhibition due to fosmidomycin was rescued by media supplemented with isoprenoid metabolites. Isoprenoid metabolism proceeded through DXR even in the presence of fosmidomycin but was inhibited at the level of the downstream enzyme, methylerythritol phosphate cytidyltransferase (IspD). Overexpression of IspD in E. coli conferred fosmidomycin resistance, and fosmidomycin was found to inhibit IspD in vitro. This work has validated fosmidomycin as a biological reagent for blocking non-mevalonate isoprenoid metabolism and suggests a second in vivo target for fosmidomycin within isoprenoid biosynthesis, in two evolutionarily diverse pathogens.  相似文献   

7.
The recently discovered 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of plastid isoprenoids (including carotenoids) is not fully elucidated yet despite its central importance for plant life. It is known, however, that the first reaction completely specific to the pathway is the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) into MEP by the enzyme DXP reductoisomerase (DXR). We have identified a tomato cDNA encoding a protein with homology to DXR and in vivo activity, and show that the levels of the corresponding DXR mRNA and encoded protein in fruit tissues are similar before and during the massive accumulation of carotenoids characteristic of fruit ripening. The results are consistent with a non-limiting role of DXR, and support previous work proposing DXP synthase (DXS) as the first regulatory enzyme for plastid isoprenoid biosynthesis in tomato fruit. Inhibition of DXR activity by fosmidomycin showed that plastid isoprenoid biosynthesis is required for tomato fruit carotenogenesis but not for other ripening processes. In addition, dormancy was reduced in seeds from fosmidomycin-treated fruit but not in seeds from the tomato yellow ripe mutant (defective in phytoene synthase-1, PSY1), suggesting that the isoform PSY2 might channel the production of carotenoids for abscisic acid biosynthesis. Furthermore, the complete arrest of tomato seedling development using fosmidomycin confirms a key role of the MEP pathway in plant development.  相似文献   

8.
Incorporation of [1-13C]-glucose and fosmidomycin was achieved in young and rapidly expanding (aged 15 days) leaves of lemongrass (C. flexuosus) cv. suvarna to elucidate biosynthetic origin of citral (3,7-dimethyl-2,6-octadienal). Analyses of the resultant 13C-labeling patterns of citral by quantitative 13C-NMR spectroscopy revealed significant %13C enrichment at carbons C-3, C-5, C-7 and C-9 in citral. This labeling pattern of the citral is in accordance with their biosynthesis via 2C-methyl-d-erythritol-4-phosphate (MEP) pathway. However, incorporation of [1-13C]-glucose achieved in the presence of fosmidomycin resulted in a 13C-labeling pattern of citral which did not match with labeling pattern characteristic of the MEP pathway. In addition, we studied the activity pattern of the DXR enzyme following fosmidomycin (25, 50, 75 and 100 μM concentrations) treatment of the young (aged 15 days) leaves for 48 h. The results revealed that fosmidomycin (100 μM) caused drastic inhibition (>50 %) of the DXR enzyme activity. The levels of the citral measured in the fosmidomycin treated leaves were also found to be reduced with decrease the activity of DXR enzyme. In conclusion, the results of the present work revealed the presence of the MEP pathway and its role in the biosynthesis of citral in lemongrass. In addition, the critical role of the DXR enzyme in the citral biosynthesis is highlighted. This is the first report on elucidation of the MEP pathway in lemongrass and may help in deeper understanding of the monoterpene biosynthesis and regulation in the genus Cymbopogon of high industrial significance.  相似文献   

9.
采用非甲羟戊酸途径抑制剂磷甘霉素和甲羟戊酸途径抑制剂洛伐它汀对中国红豆杉悬浮细胞培养物进行处理.在添加和未添加茉莉酸甲酯诱导的情况下,前者使紫杉醇产量减少了2/5和1/5,后者使紫杉醇产量减少了1/6和1/10,表明两种途径对紫杉醇的生物合成都具有贡献,其中非甲羟戊酸途径贡献较大;通过定量PCR技术分别检测两条途径的关键酶5-磷酸脱氧木酮糖还原异构酶(DXR)和3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)mRNA水平的变化,发现两种抑制剂都能够激活hmgr和dxr的转录,表明两种代谢途径之间存在协同作用,共同为紫杉醇的生物合成提供前体.  相似文献   

10.
11.
Enzymes of the 1-deoxy-D-xylulose 5-phosphate/2-C-methylerythritol 4-phosphate (DOXP/MEP) pathway are targets for new herbicides and antibacterial drugs. Until now, no inhibitors for the DOXP synthase have been known of. We show that one of the breakdown products of the herbicide clomazone affects the DOXP synthase. One inhibitor of the non-mevalonate pathway, fosmidomycin, blocks the DOXP reductoisomerase (DXR) of plants and bacteria. The I(50) values of plants are, however, higher than those found for the DXR of Escherichia coli. The DXR of plants, isolated from barley seedlings, shows a pH optimum of 8.1, which is typical for enzymes active in the chloroplast stroma.  相似文献   

12.
Deoxyxylulose 5-phosphate (DXP) analogs were synthesized and evaluated as alternative substrates and inhibitors of recombinant Synechocystis PCC6803 DXP reductoisomerase (DXR; EC 1.1.1.267). Five of the compounds tested (1,2-dideoxy-D-threo-3-hexulose 6-phosphate, 1-deoxy-l-ribulose 5-phosphate, 2S,3R-dihydroxybutyramide 4-phosphate, 4S-hydroxypentan-2-one 5-phosphate, and 3S-hydroxypentan-2-one 5-phosphate) acted as relatively weak competitive inhibitors when compared to fosmidomycin. A sixth compound, 3R,4S-dihydroxy-5-oxohexylphosphonic acid, served as an alternate substrate, as has recently been reported for the same compound with Escherichia coli DXR.  相似文献   

13.
The methylerythritol phosphate pathway to isoprenoids, an alternate biosynthetic route present in many bacteria, algae, plants, and the malarial parasite Plasmodium falciparum, has become an attractive target for the development of new antimalarial and antibacterial compounds. The second enzyme in this pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; EC 1.1.1.267), has been shown to be the molecular target for fosmidomycin, a promising antimalarial drug. This enzyme converts 1-deoxy-D-xylulose 5-phosphate (DXP) into the branched compound 2-C-methyl-D-erythritol 4-phosphate (MEP). The transformation of DXP into MEP requires an isomerization, followed by a NADPH-dependent reduction. The discovery of DXR, its subsequent characterization, and the identification of inhibitors will be presented.  相似文献   

14.
The non-mevalonate or 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is responsible for generating isoprenoid precursors in plants, protozoa, and bacteria. Because this pathway is absent in humans, its enzymes represent potential targets for the development of herbicides and antibiotics. 1-Deoxy-d-xylulose (DXP) reductoisomerase (DXR) is a particularly attractive target that catalyzes the pathway’s first committed step: the sequential isomerization and NADPH-dependent reduction of DXP to MEP. This article provides a comprehensive review of the mechanistic and structural investigations on DXR, including its discovery and validation as a drug target, elucidation of its chemical and kinetic mechanisms, characterization of inhibition by the natural antibiotic fosmidomycin, and identification of structural features that provide the molecular basis for inhibition of and catalysis.  相似文献   

15.
In view of the promising antimalarial activity of fosmidomycin or its N-acetyl homologue FR900098, the objective of this work was to investigate the influence of aromatic substituents in the alpha-position of the phosphonate moiety. The envisaged analogues were prepared using a linear route involving a 3-aryl-3-phosphoryl propanal intermediate. The activities of all compounds were evaluated on Eschericia coli 1-deoxy-d-xylulose 5-phosphate reductoisomerase and against two Plasmodium falciparum strains. Compared with fosmidomycin, several analogues displayed enhanced activity towards the P. falciparum strains. Compound 1e with a 3,4-dichlorophenyl substitution in the alpha-position of fosmidomycin emerged as the most potent analogue of this series. It is approximately three times more potent in inhibiting the growth of P. falciparum than FR900098, the most potent representative of this class reported so far.  相似文献   

16.
The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in␣DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.  相似文献   

17.
The methylerythritol phosphate pathway to isoprenoids has been firmly established as an alternate to the mevalonate pathway in many bacteria, plants, algae, and the malaria parasite Plasmodium falciparum. The second enzyme in this pathway, deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; E.C. 1.1.1.267), has been the focus of many investigations since it was found to be the target of the antibacterial and antimalarial compound, fosmidomycin. Several x-ray crystal structures of the Escherichia coli and Zymomonas mobilis DXR enzymes have provided important structural information about the residues potentially involved in substrate binding and catalysis. Site-directed mutagenesis studies can be used to complement the structural studies, providing kinetic data for specific changes of active site residues. Active site mutants were prepared of the recombinant Synechocystis sp. PCC6803 DXR, targeting residues D152, S153, E154, H155, M206, and E223. Alteration of the three acidic residues had major effects on catalysis, changes to S153 and M206 had variable effects on binding and catalysis, and a H155A mutation had only minimal effects on the kinetic parameters.  相似文献   

18.
Fosmidomycin is a natural antibiotic with promising IspC (DXR, 1-deoxy-d-xylulose-5-phosphate reductoisomerase) inhibitory activity. This enzyme catalyzes the first committed step of the non-mevalonate isoprenoid biosynthesis pathway, which is essential in Plasmodium falciparum and Mycobacterium tuberculosis. Mainly as a result of its high polarity, fosmidomycin displays suboptimal pharmacokinetic properties. Furthermore, fosmidomycin is inactive against M. tuberculosis as a result of its inability to penetrate the bacterial cell wall. Temporarily masking the phosphonate moiety as a prodrug has the potential to solve both issues. We report the application of two amino acid based prodrug approaches on a fosmidomycin surrogate. Conversion of the phosphonate moiety into tyrosine-derived esters increases the in vitro activity against asexual blood stages of P. falciparum, while phosphonodiamidate prodrugs display promising antitubercular activities. Selected prodrugs were tested in vivo in a P. berghei malaria mouse model. These results indicate good in vivo antiplasmodial potential.  相似文献   

19.
Most bacteria use the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for the synthesis of their essential isoprenoid precursors. The absence of the MEP pathway in humans makes it a promising new target for the development of much needed new and safe antimicrobial drugs. However, bacteria show a remarkable metabolic plasticity for isoprenoid production. For example, the NADPH-dependent production of MEP from 1-deoxy-d-xylulose 5-phosphate in the first committed step of the MEP pathway is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in most bacteria, whereas an unrelated DXR-like (DRL) protein was recently found to catalyze the same reaction in some organisms, including the emerging human and animal pathogens Bartonella and Brucella. Here, we report the x-ray crystal structures of the Brucella abortus DRL enzyme in its apo form and in complex with the broad-spectrum antibiotic fosmidomycin solved to 1.5 and 1.8 Å resolution, respectively. DRL is a dimer, with each polypeptide folding into three distinct domains starting with the NADPH-binding domain, in resemblance to the structure of bacterial DXR enzymes. Other than that, DRL and DXR show a low structural relationship, with a different disposition of the domains and a topologically unrelated C-terminal domain. In particular, the active site of DRL presents a unique arrangement, suggesting that the design of drugs that would selectively inhibit DRL-harboring pathogens without affecting beneficial or innocuous bacteria harboring DXR should be feasible. As a proof of concept, we identified two strong DXR inhibitors that have virtually no effect on DRL activity.  相似文献   

20.
Substituted 3-[2-(diethoxyphosphoryl)propyl]oxazolo[4,5-b]pyridine-2(3H)-ones were obtained by functionalization at 6-position with various substituents (aryl, vinyl, carbonyl chains) via reactions catalysed with palladium. We found that these new fosmidomycin analogues inhibited the accumulation of ajmalicine, a marker of monoterpenoid indole alkaloids production in plant cells. Some of them have greater inhibitory effect than fosmidomycin and fully inhibit alkaloid accumulation at the concentration of 100 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号