首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A remarkable diversity of life history strategies, geographic distributions, and morphological characters provide a rich substrate for investigating the evolutionary relationships of arhynchobdellid leeches. The phylogenetic relationships, using parsimony analysis, of the order Arhynchobdellida were investigated using nuclear 18S and 28S rDNA, mitochondrial 12S rDNA, and cytochrome c oxidase subunit I sequence data, as well as 24 morphological characters. Thirty-nine arhynchobdellid species were selected to represent the seven currently recognized families. Sixteen rhynchobdellid leeches from the families Glossiphoniidae and Piscicolidae were included as outgroup taxa. Analysis of all available data resolved a single most-parsimonious tree. The cladogram conflicted with most of the traditional classification schemes of the Arhynchobdellida. Monophyly of the Erpobdelliformes and Hirudiniformes was supported, whereas the families Haemadipsidae, Haemopidae, and Hirudinidae, as well as the genera Hirudo or Aliolimnatis, were found not to be monophyletic. The results provide insight on the phylogenetic positions for the taxonomically problematic families Americobdellidae and Cylicobdellidae, the genera Semiscolex, Patagoniobdella, and Mesobdella, as well as genera traditionally classified under Hirudinidae. The evolution of dietary and habitat preferences is examined.  相似文献   

2.
There are 60 species of blood-feeding land leeches, 50 species belonging to the family Haemadipsidae and 10 species belonging to the family Xerobdellidae. Despite recent papers on the land leeches, their taxonomic identification is not fully understood, especially at a species level. In Korea, there have been no historical records of the terrestrial leeches, but recently an unrecorded blood-feeding land leech was discovered at Gageo-do (Island), Korea. Molecular analysis was used to identify the species of 29 leeches collected from Mt. Dock-Sil in Gageo-do. Conventional PCR was conducted using nuclear 18S rRNA and mitochondrial cytochrome c oxidase subunit 1 (CO1) genetic marker. The 18S rRNA sequences revealed that the leeches share 99.9% identity with Haemadipsa rjukjuana (inhabiting Taiwan), and the CO1 sequences revealed that the leeches are very close to H. rjukjuana (inhabiting Taiwan). The CO1 sequences were separated into 2 categories, 1 with 94.6% and the other with 94.3% similarity to the H. rjukjuana L00115A (inhabiting Taiwan). This new finding of the land leech is the first record in Korea. In addition, the north range of the distribution of the blood-feeding leech (Hirudiniformes: Haemadipisidae) should be reconsidered including Korea.  相似文献   

3.
4.
5.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

6.
With 556 species described to date, Kalyptorhynchia includes about one‐third of all species of rhabdocoel flatworms. In this study, we present the first molecular phylogenetic analysis of this taxon. The final analysis comprises 110 species. These represent 11 of the 17 known families. The largest family (241 known species), Polycystididae, is represented by nine of 10 subfamilies and 33 of the 58 genera. Sequence data from 18S rDNA and 28S rDNA were analysed using maximum likelihood and Bayesian approaches. Of the two taxa traditionally recognised within Kalyptorhynchia, Eukalyptorhynchia and Schizorhynchia, only Schizorhynchia is monophyletic. All eukalyptorhynch families, except Cicerinidae, are monophyletic. On the other hand, two of the three schizorhynch families included are not monophyletic. Within Polycystididae, the traditional taxonomy was not reflected in our phylogenetic analyses and most subfamilies are polyphyletic. These results suggest that current classification, mostly based on characters of the genital system, suffers from homoplasy. Where possible, a revised classification, taking into account these new findings, is given.  相似文献   

7.
The evolutionary patterns of divergence of seven euhirudinean families were investigated by cladistic analysis of 33 euhirudinean species. Oligochaetes, Acanthobdella peledina, and branchiobdellidans were included as outgroup taxa. Cladistic analysis employed 1.8 kb of nuclear 18S ribosomal DNA and 651 bp of mitochondrial cytochrome c oxidase subunit I in addition to morphological data. The use of two molecular data sets, one nuclear gene and one mitochondrial gene, as well as morphological data combined historical information evolving under a variety of different constraints and therefore was less susceptible to the biases that could confound the use of only one type of data. Results suggest that the nuclear 18S rDNA gene yields a meaningful historical signal for determining higher level relationships. The more rapidly evolving CO-I gene was informative for recent or local areas of the evolutionary hypothesis, such as within-family relationships. Analyses combining all data from the three character sets yielded one most-parsimonious tree. Most of the higher taxa in recent leech systematics were well corroborated in the resulting topology. However, these results suggested paraphyly of the order Rhynchobdellida, which contradicts the presence of a proboscis as a synapomorphy. The medicinal leech family Hirudinidae was polyphyletic because Haemadipsidae and Haemopidae each have a hirudinid ancestor. In addition, all but one of the genera within the family Erpobdellidae must be either abandoned or renamed. Unusual findings included compelling evidence of historical plasticity in bloodfeeding behavior, having been lost at least four times in the course of euhirudinean evolution. Biogeographic patterns supported a New World origin for Arhynchobdellida.  相似文献   

8.
Phylogenetic analyses of the leech family Macrobdellidae were accomplished with all nominal species in the family save one. A total of 17 specimens in nine ingroup species were analysed, along with four outgroup taxa. Twenty-two morphological characters based on jaw dentition, sexual anatomy, and external morphology failed to provide a resolution for many of the relationships in the family. DNA sequence data from nuclear 18S rDNA, nuclear 28S rDNA, mitochondrial 12S rDNA, and mitochondrial cytochrome c oxidase subunit I were examined separately and in combination with morphological characters. The resulting combined analysis strongly corroborated the placement of the genus Philobdella within the family Macrobdellidae and as sister to a monophyletic genus Macrobdella , the typical North American medicinal leeches. Furthermore, sequence divergences among these taxa confirmed the existence of two species, Philobdella gracilis and P. floridana , readily distinguishable on the basis of jaw dentition .  相似文献   

9.
Eusiroidea is one of the 20 amphipod superfamilies that were erected to subdivide the very large and controversial suborder Gammaridea. Yet, the definition of the superfamily is not based on synapomorphies, but on a combination of diagnostic phenetic similarities that hold more or less consistently across families. Moreover, many of the characters used to define eusiroid families are suspected to show convergent evolution. The current classification of the Eusiroidea may therefore not reflect evolutionary relationships accurately. Here, we present a molecular phylogenetic re‐analysis of the Eusiroidea based on a comparison of 18S and 28S rDNA sequences of 73 species, representing 47 genera and 16 families that potentially belong to the superfamily. The results suggest that at least species belonging to 14 of these traditional families would be part of a eusiroid clade, increasing by more than twofold the species and generic richness of the group. However, most of the eusiroid families surveyed do not appear monophyletic. Finally, the analyses show that several important morphological characteristics, traditionally used in eusiroid taxonomy, are homoplastic.  相似文献   

10.
Oceguera‐Figueroa, A., Phillips, A. J., Pacheco‐Chaves, B., Reeves, W. K. & Siddall, M. E. (2010). Phylogeny of macrophagous leeches (Hirudinea, Clitellata) based on molecular data and evaluation of the barcoding locus. —Zoologica Scripta, 40, 194–203. The phylogenetic relationships of macrophagous leech species are studied using two mitochondrial [cytochrome c oxidase subunit I (COI) and 12S rDNA] and two nuclear (28S rDNA and 18S rDNA) markers. The complete dataset analysed in this study included 49 terminals and 5540 aligned characters. Phylogenetic analyses were performed under two optimality criteria: Maximum Parsimony and Maximum Likelihood. The monophyly of the two currently recognized families (i.e. Erpobdellidae and Salifidae) is confirmed and well supported. The phylogenetic position of Gastrostomobdellidea is studied for the first time and found to be sister to family Salifidae nested well within Erpobdelliformes. Previously recognized taxonomic arrangements were evaluated and discarded through successive constraint analyses. Correlation between morphology and phylogeny was notable in Salifidae but not in Erpobdellidae. Variability of COI, the barcoding locus, was examined across species leading to the recognition of the invasive Barbronia weberi in Mexico, Costa Rica, Germany, South Africa and Taiwan.  相似文献   

11.
Phylum Tardigrada consists of ~1000 tiny, hardy metazoan species distributed throughout terrestrial, limno‐terrestrial and oceanic habitats. Their phylogenetic status has been debated, with current evidence placing them in the Ecdysozoa. Although there have been efforts to explore tardigrade phylogeny using both morphological and molecular data, limitations such as their few morphological characters and low genomic DNA concentrations have resulted in restricted taxonomic coverage. Using a protocol that allows us to identify and extract DNA from individuals, we have sequenced 18S rDNA from 343 tardigrades from across the globe. Using maximum parsimony and Bayesian analyses we have found support for dividing Order Parachela into three super‐families and further evidence that indicates the traditional taxonomic perspective of families in the class Eutardigrada are nonmonophyletic and require re‐working. It appears that conserved morphology within Tardigrada has resulted in conservative taxonomy as we have found cases of several discrete lineages grouped into single genera. Although this work substantially adds to the understanding of the evolution and taxonomy of the phylum, we highlight that inferences gained from this work are likely to be refined with the inclusion of further taxa—specifically representatives of the nine families yet to be sampled. © The Willi Hennig Society 2008.  相似文献   

12.
Abstract  Using the Hennig 86 phylogenetic analysis program to analyse the taxa in genera related to Condeellum , the phylogenetic relationships among the species are schemed on the basis of potential synapomorphies of the adults, represented by 16 characters. The character evolution and the route of dispersal are also discussed. The cladistic biogeographic analysis is performed. The basal taxon Condeellum exhibits an Indo-Pacific distribution and the sister group Neocondeellum species exhibit a collective Oriental and Holarctic distribution. The distribution patterns and the vicariance events occurred in those areas are hypothesized.  相似文献   

13.
14.
Eunicid annelids inhabit diverse marine habitats worldwide, have ecological and economic importance and have been pictured in the news as giant predator worms. They compose a traditional stable taxon recently supported as monophyletic but characterized by plesiomorphies. Most genera within the family have been recovered as paraphyletic in previous studies. We present a phylogenetic hypothesis for eunicid based on molecular (COI, 16S rDNA, 18S rDNA) and morphological data (213 characters), including an explicit attempt to account for serial homology. Eunicidae as well as monophyletic genera Marphysa sensu stricto and Lysidice is redefined based on synapomorphies. Nematonereis is synonymized to Lysidice. Leodice and Nicidion are resurrected to name monophyletic groups including species previously included in Eunice and Marphysa sensu lato. Traditional diagnostic characters such as the absence/presence of peristomial cirri, lateral antennae and branchiae are homoplasies and not informative at the generic level. Different coding of traditional characters (i.e. articulation of prostomial appendages) and novel characters of prostomial features and regionalization of the body support the monophyly of the family and genera level clades. Thus, the phylogenetic hypothesis presented here and the evolution of characters provided background information for taxonomic changes yielding evolutionary meaningful classification and diagnoses for the family and genera.  相似文献   

15.
Lanternflies (Insecta: Hemiptera: Fulgoridae) are frequently used as examples of unusual morphological evolution, with some species (such as the peanut-headed bug, Fulgora laternaria Linnaeus) also ubiquitously cited as icons of tropical insect biodiversity. Despite that entomological notoriety, the phylogeny of this charismatic planthopper family has never before been studied. Presented here are the results of a phylogenetic investigation of Fulgoridae based on DNA nucleotide sequence data from five genetic loci (18S rDNA, 28S rDNA, histone 3, wingless, and cytochrome oxidase I). The resulting topologies are used to test the higher classification of Fulgoridae, which is based primarily on characters associated with the curious head morphology of many included species. Analyses include a taxonomic sample of 69 fulgorid species representing 46 (of 110) genera, 10 (of 11) tribes, and all 8 currently recognized subfamilies. Results of this study: (1) demonstrate the need for a revised classification of Fulgoridae, particularly at the higher taxonomic levels; (2) suggest that the genus Zanna is excluded from a monophyletic Fulgoridae; (3) indicate that there have been multiple losses of the extended head process across fulgorid evolution, with what appears to be convergence (in shape and/or loss) in distantly related lineages; and (4) suggest two alternative biogeographic hypotheses to explain the distribution of extant Fulgoridae, with either an Old World origin and a single subsequent colonization of the New World, or a contemporaneous diversification of Old and New World lineages.  相似文献   

16.
国产五味子科五种植物叶片脉序研究   总被引:4,自引:0,他引:4  
首次报道了国产五味子科5种植物的叶脉特征,对科、属、种的特征作了描述,编排有分种检索表.通过与八角科叶脉的比较,支持建立五味子科与八角科的观点,认为五味子属的系统位置在南五味子属之后,并讨论了八角目的演化趋势  相似文献   

17.
Phylogenetic relationships of all genera of the fish leech subfamily Pontobdellinae were investigated using mitochondrial (12S rDNA, COI, tRNA-Leu, ND1) and nuclear (28S rDNA) DNA sequences under maximum likelihood, Bayesian inference and parsimony. All methods resulted in trees that corroborated the monophyly of the family Piscicolidae, but recovered their subfamily Pontobdellinae as non-monophyletic. Based on the basal position of the giant Antarctic Megaliobdella szidati , it is hypothesized that the putative ancestor of fish leeches was a free-ranging, large bodied, muscular leech. The next branch contains parasites of cartilaginous fishes, Pontobdella muricata and Pontobdella macrothela . Two remaining genera of the subfamily (the Arctic Oxytonostoma and the Antarctic Moorebdellina ) showed weak affinities to other piscicolid taxa. The obtained phylogenetic hypothesis suggests a possible transition from an ancestral free-ranging life style and temporary parasitism, to parasitism on cartilaginous fishes, followed by parasitism on bony fishes.  相似文献   

18.
The 16S rDNA sequences of 11 strains, nine type strains of validated Pseudonocardia species and Actinobispora yunnanensis, and two strains of unnamed Pseudonocardia species, were determined and compared with those of representatives of the family Pseudonocardiaceae. The phylogenetic analysis indicated that all of the validated species of the genera Pseudonocardia and Actinobispora consistently formed a monophyletic unit and separated well from the other genera of the family Pseudonocardiaceae. One unnamed Pseudonocardia strain was related to members of the genus Pseudonocardia, whereas the other unnamed Pseudonocardia strain formed a distinct clade within the radiation of the genus Amycolatopsis.  相似文献   

19.
Most species of freshwater bryozoans (Ectoprocta: Phylactolaemata) have few morphological distinctions, and within phylactolaemates, the morphology of the statoblast has been used to determine evolutionary relationships. Here, two controversial phylogenies have been proposed for phylactolaemates with regard to the relationship of Lophopodidae to other families. Two plumatellid genera, Gelatinella and Hyalinella , are candidates for the ancestral type of lophopodids. In addition, the coexistence of spines on the surfaces of the statoblast has led to the suggestion that lophopodids are closely related to the family Cristatellidae. In this study, we analysed mitochondrial DNA sequences of the 12S and 16S rDNA genes of 10 phylactolaemate species. Our results suggest that plumatellids may not be a direct ancestral group of lophopodids and that cristatellids are not a sister group of lophopodids. Fredericella , which was previously thought to be an ancestral group, was revealed to be derived. In addition, our results suggest that Stephanella is the most basal phylactolaemate. Mapping morphological characteristics onto the sequence-based phylogenetic tree revealed convergent evolution of statoblast characters.  相似文献   

20.
DNA data were collected from a number of acanthomorph fishes for 12S rDNA (30 sequences) and 16S rDNA (39 sequences) to investigate the phylogenetic relationships of genera within Cetomimidae (whalefishes) and of this family within the Stephanoberyciformes/Beryciformes assemblage. The Cetomimidae are apparently monophyletic. Within the family, species of Gyrinomimus and Cetomimus form a clade but the former genus is paraphyletic with respect to the latter. Cetostoma is sister to Ditropichthys rather than to Gyrinomimus plus Cetomimus as suggested by morphological analyses. Rondeletiidae + Cetomimidae + Barbourisiidae are shown, as expected from morphological analyses, as a monophyletic group in the 12S rDNA analyses, but not in the 16S rDNA or combined analyses, although the shortest trees showing the group require only one extra step in each case. These three families plus Melamphaidae (our sample of Stephanoberyciformes) are not shown as a group in any analysis, with Melamphaidae being sister to Berycidae in the 16S and combined analyses, but dispersed in the 12S analyses. Maximum-parsimony trees without imposed constraints are notably shorter than trees constrained to show ordinal groupings or either of the two main current hypotheses of Stephanoberyciformes/Beryciformes relationships. The length difference is highly significant for most comparisons using either 12S or 16S rDNA sets or their combination, and significant or nearly so for all comparisons. In particular, the Beryciformes is unlikely to be monophyletic. The Holocentridae are included, with high bootstrap and Bremer support, in a clade of non-beryciforms comprising the Gempylidae, Zeidae, and Atheriniformes (the only higher acanthomorphs sampled) and not with other Beryciform families. In these data, the Berycidae are the sister to the Melamphaidae, a stephanoberyciform family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号