共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To obtain a clearer concept of the mechanism of organic solute transport in mammalian cells, we have attempted to reconstitute a functional transport system for amino acids from plasma membranes of Ehrlich ascites cells. Purified plasma membranes were dissolved in 2% Na cholate--4 M urea, a mixture which brought over 85% of the membrane proteins into solution. After centrifugation of the solubilized material for 2 hrs at 100,000 x g, the supernatant was dialyzed in the cold for 20 hrs with additional lipid. The reformed vesicles were tested for the ability to transport amino acids. The preliminary results obtained show that the uptake of alpha-aminoisobutyric acid can be inhibited by L-methionine and much less by L-leucine as would be predicted from the known properties of alpha-aminoisobutyric transport in the intact cells. In addition, it has been possible to show accelerated efflux of intravesicular phenylalanine when phenylalanine is added to the trans side (medium side). The data are consistent with the conclusion that there is carrier mediated transport in the reconstituted vesicles. 相似文献
3.
Sodium-dependent neutral amino acid transport by human liver plasma membrane vesicles 总被引:1,自引:0,他引:1
The activities of several selected Na(+)-dependent amino acid transporters were identified in human liver plasma membrane vesicles by testing for Na(+)-dependent uptake of several naturally occurring neutral amino acids or their analogs. Alanine, 2-(methylamino)isobutyric acid, and 2-aminoisobutyric acid were shown to be almost exclusively transported by the same carrier, system A. Kinetic analysis of 2-(methylamino)isobutyric acid uptake by the human hepatic system A transporter revealed an apparent Km of 0.15 mM and a Vmax of 540 pmol.mg-1 protein.min-1. Human hepatic system A accepts a broad range of neutral amino acids including cysteine, glutamine, and histidine, which have been shown in other species to be transported mainly by disparate carriers. Inhibition analysis of Na(+)-dependent cysteine transport revealed that the portion of uptake not mediated by system A included at least two saturable carriers, system ASC and one other that has yet to be characterized. Most of the glutamine and histidine uptake was Na(+)-dependent, and the component not mediated by system A constituted system N. The largest portion of glycine transport was mediated through system A and the remainder by system ASC with no evidence for system Gly activity. Our examination of Na(+)-dependent amino acid transport documents the presence of several transport systems analogous to those described previously but with some notable differences in their functional activity. Most importantly, the results demonstrate that liver plasma membrane vesicles are a valuable resource for transport analysis of human tissue. 相似文献
4.
Miguel A. Medina Ana R. Quesada Ignacio Núñez de Castro 《Journal of bioenergetics and biomembranes》1991,23(4):689-697
Native vesicles isolated from Ehrlich ascites tumor cells accumulate glutamine by means of Na+-dependent transport systems; thiocyanate seems to be the more effective anion. The apparent affinity constant for the process was 0.38 mM. The Arrhenius plot gave an apparent activation energy of 12.3 kJ/mol. The structural analogs of glutamine, acivicin (2.5 mM) and azaserine (2.5 mM), inhibited the net uptake by 67 and 70%, respectively. The sulfhydryl reagents mersalyl, PCMBS, NEM, and DTNB also inhibited net uptake, suggesting that sulfhydryl groups may be involved in the activity of the carrier protein. A strong inhibition was detected when the vesicles were incubated in the presence of alanine, cysteine, or serine; in addition, histidine, but not glutamate or leucine, had a negative effect on glutamine transport. 相似文献
5.
Effect of alkali cations on freeze-thaw-dependent reconstitution of amino acid transport from Ehrlich ascites cell plasma membrane 总被引:2,自引:0,他引:2
Na+-dependent amino acid transport can be reconstituted by gel filtration of disaggregated plasma membrane and asolectin vesicles coupled to a freeze-thaw cycle. The resultant transport activity is markedly affected by the nature of the reconstitution medium. Reconstitution in K+ permits the formation of active liposomes, whereas reconstitution in Na+, Li+, or choline does not. Electron micrographs of K+ liposomes show a wide variation in liposome sizes. Ficoll density gradient fractionation of K+ liposomes shows that the largest vesicles are lipid rich, have the lowest density, and have the highest level of Na+-dependent amino acid transport. Liposomes formed in Na+ have a 34% smaller trapped volume than K+ liposomes and lack a population of large vesicles. A second freeze-thaw in K+ restores activity to Na+ liposomes which now contain large low density active vesicles. Fluorescence measurements of freeze-thaw-induced mixing of vesicle lipids indicates that the absence of large vesicles in Na+ liposomes is due to inhibition by Na+ of lipid vesicle fusion events during freezing and thawing. The large vesicle fraction is enriched in a 125-kDa peptide. It has not yet been established whether this peptide is part of the transport system for neutral amino acids. 相似文献
6.
7.
Motoyasu Ohsawa Michael S. Kilberg Gene Kimmel Halvor N. Christensen 《生物化学与生物物理学报:生物膜》1980,599(1):175-190
We redirect attention to contributions to the energization of the active transport of amino acids in the Ehrlich cell, beyond the known energization by down-gradient comigration of Na+, beyond possible direct energization by coupling to ATP breakdown, and beyond known energization by exchange with prior accumulations of amino acids. We re-emphasize the uphill operation of System L, and by prior depletion of cellular amino acids show that this system must receive energy beyond that made available by their coupled exodus. After this depletion the Na+-independent accumulation of the norbornane amino acid, 2-aminobicycloheptane-2-carboxylic acid becomes strongly subject to stimulation by incubation with glucose. Energy transfer between Systems A and L through the mutual substrate action of ordinary amino acids was minimized although not entirely avoided by the use of amino acid analogs specific to each system.When 2,4-dinitrophenol was included in the depleting treatment, and pyruvate, phenazine methosulfate, or glucose used for restoration, recovery of uptake of the norbornane amino acid was independent of external Na+ or K+ levels. Restoration of the uptake of 2-(methylamino)isobutyric acid was, however, decreased by omission of external K+. Contrary to an earlier finding, restoration of uptake of each of these amino acids was associated with distinct and usually correlated rises in cellular ATP levels. ATP addition failed to stimulate exodus of the norbornane amino acid from plasma membrane vesicles, although either NADH or phenazine methosulfate did stimulate exodus. ATP production and use is thus associated with transport energization, although evidence for a direct role failed to appear. 相似文献
8.
9.
10.
Na+-dependent amino acid transport can be reconstituted from solubilized Ehrlich cell plasma membranes by addition of asolectin vesicles, gel filtration, and a freeze-thaw cycle. Removal of phosphatidic acid (approximately 10% of the total lipid) by Ba2+ precipitation reduces the efficiency of reconstitution of Na+-dependent amino acid transport by approximately 73% and decreases intravesicular volume of the proteoliposomes by approximately 43%. The loss of transport activity is not due to exclusion of specific proteins during reconstitution. The phosphatidic acid-free liposomes are less permeable and require more time to attain an equilibrium distribution of solute. Transport activity and intravesicular volume can be restored to Ba2+-precipitated asolectin proteoliposomes by addition of egg-phosphatidic acid during reconstitution. The extent of recovery of transport activity is proportional to the change in intravesicular volume and depends on the amount of phosphatidic acid present. Replacement of phosphatidic acid with 20% phosphatidylserine or phosphatidylglycerol leads to increases in intravesicular volume with little or no increase in amino acid transport. Generation of phosphatidic acid in situ by treatment of Ba2+-precipitated proteoliposomes with phospholipase D also restored transport. The observed increase in transport activity (9-fold) is accompanied by a 46% increase in intravesicular volume, presumably caused by vesicle fusion. Phosphatidic acid is also required for successful reconstitution of Na+-dependent amino acid transport from pure phosphatidylcholine:phosphatidylethanolamine (1:1) mixtures with only a small change (approximately 16%) in intravesicular volume. The results provide evidence for both indirect and direct effects of phosphatidic acid on reconstitution of Na+-dependent amino acid transport. The indirect effects occur through enlargement of intravesicular volume, large vesicles showing higher rates of transport. However, there is also evidence to indicate a specific effect of phosphatidic acid on the Na+-dependent amino acid transporter, since other acidic lipids may change intravesicular volume without a commensurate change in transport activity. 相似文献
11.
12.
13.
D J Hillenga H J Versantvoort A J Driessen W N Konings 《Journal of bacteriology》1996,178(14):3991-3995
The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumulated the basic amino acids arginine and lysine. Inhibition studies with analogs revealed a narrow substrate specificity. Within the external pH range of 5.5 to 7.5, the transmembrane electrical potential (delta psi) functions as the main driving force for uphill transport of arginine, although a low level of uptake was observed when only a transmembrane pH gradient was present. It is concluded that the basic amino acid permease is a H+ symporter. Quantitative analysis of the steady-state levels of arginine uptake in relation to the proton motive force suggests a H+-arginine symport stoichiometry of one to one. Efflux studies demonstrated that the basic amino acid permease functions in a reversible manner. 相似文献
14.
Pilar Luque Javier Márquez Ignacio Núñez de Castro Miguel Angel Medina 《The Journal of membrane biology》1991,123(3):247-254
Summary Plasma membrane vesicles were prepared from Ehrlich cells using two-phase system compartmentation. The highly pure plasma membrane vesicles obtained presented a negligible mitochondrial contamination and were suitable for studies of amino acid transport.l-Serine transport showed a clear ionic specificity, maximum incorporation being observed when an inwardly directed NaSCN gradient was used. Na+-dependentl-serine transport was dependent on assay temperature and membrane potential, and it seemed to be carried out by two different transport systems. An essential sulfhydryl group seemed to be involved in the transport process. 相似文献
15.
The fatty acyl group composition of Ehrlich ascites tumor cell plasma membranes was modified by feeding the tumor-bearing mice diets rich in either coconut or sunflower oil. When coconut oil was fed, the oleate content of the membrane phospholipids was elevated and the linoleate content reduced. The opposite occurred when sunflower oil was fed. Qualitatively similar changes were observed in the plasma membrane phosphatidylethanolamine, phosphatidylcholine and mixed phosphatidylserine plus phosphatidylinositol fractions. These diets also produced differences in the sphingomyelin fraction, particularly in the palmitic and nervonic acid contents. Unexpectedly, the saturated fatty acid content of the plasma membrane phospholipids was somewhat greater when the highly polyunsaturated sunflower oil was fed. The small quantities of neutral lipids contained in the plasma membrane exhibited changes in acyl group composition similar to those observed in the phospholipids. These fatty acyl group changes were not accompanied by any alteration in the cholesterol or phospholipid contents of the plasma membranes. Therefore, the lipid alterations produced in this experimental model system are confined to the membrane acyl groups. 相似文献
16.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further. 相似文献
17.
Molecular size of a Na(+)-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation 总被引:1,自引:0,他引:1
Radiation inactivation was used to estimate the molecular size of a Na(+)-dependent amino acid transport system in Ehrlich ascites cell plasma membrane vesicles. Na(+)-dependent alpha-aminoisobutyric acid uptake was measured after membranes were irradiated at -78.5 degrees C in a cryoprotective medium. Twenty-five percent of the transport activity was lost at low radiation doses (less than 0.5 Mrad), suggesting the presence of a high molecular weight transport complex. The remaining activity (approximately 75% of total) decreased exponentially with increasing radiation dose, and a molecular size of 347 kDa was calculated for the latter carrier system. Vesicle permeability and intravesicular volume were measured to verify that losses in transport activity were due to a direct effect of radiation on the transporter and not through indirect effects on the structural integrity of membrane vesicles. Radiation doses 2-3-fold higher than those required to inactivate amino acid transport were needed to cause significant volume changes (greater than 15%). Vesicle permeability was unchanged by the irradiation. The structural integrity of plasma membrane vesicles was therefore maintained at radiation doses where there was a dramatic decrease in amino acid transport. The relationship between the fragmentation of a 120-130-kDa peptide, a putative component of the Na(+)-dependent amino acid carrier [McCormick, J. I., & Johnstone, R. M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7877-7881], and loss of transport activity in irradiated membranes was also examined. Peptide loss was quantitated by Western blot analysis.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
The fatty acyl group composition of Ehrlich ascites tumor cell plasma membranes was modified by feeding the tumor-bearing mice diets rich in either coconut or sunflower oil. When coconut oil was fed, the oleate content of the membrane phospholipids was elevated and the linoleate content reduced. The opposite occurred when sunflower oil was fed. Qualitatively similar changes were observed in the plasma membrane phosphatidylethanolamine, phosphatidylcholine and mixed phosphatidylserine plus phosphatidylinositol fractions. These diets also produced differences in the sphingomyelin fraction, particularly in the palmitic and nervonic acid contents. Unexpectedly, the saturated fatty acid content of the plasma membrane phospholipids was somewhat greater when the highly polyunsaturated sunflower oil was fed. The small quantities of neutral lipids contained in the plasma membrane exhibited changes in acyl group composition similar to those observed in the phospholipids. These fatty acyl group changes were not accompanied by any alteration in the cholesterol or phospholipid contents of the plasma membranes. Therefore, the lipid alterations produced in this experimental model system are confined to the membrane acyl groups. 相似文献
19.
Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa. 下载免费PDF全文
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system. 相似文献
20.
Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubule 总被引:1,自引:0,他引:1
The mechanisms for Cl transport across basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were examined by using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). The transporters studied included Cl/base exchange, Cl/base/Na cotransport, K/Cl cotransport, and Cl conductance. Initial rates of chloride influx (JCl) were determined from the measured time course of SPQ fluorescence in BLMV following inwardly directed gradients of Cl and gradients of other ions and/or pH. For a 50 mM inwardly directed Cl gradient in BLMV which were voltage and pH clamped (7.0) using K/valinomycin and nigericin, JCl was 0.80 +/- 0.14 nmol S-1 (mg of vesicle protein)-1 (mean +/- SD, n = 8 separate preparations). In the absence of Na and CO2/HCO3 in voltage-clamped BLMV, JCl increased 56% +/- 5% in response to a 1.9 pH unit inwardly directed H gradient; the increase was further enhanced by 40% +/- 3% in the presence of CO2/HCO3 and inhibited 30% +/- 8% by 100 microM dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na gradients did not increase JCl in the absence of CO2/HCO3; however, an outwardly directed Na gradient in the presence of CO2/HCO3 increased JCl by 31% +/- 8% with a Na KD of 7 +/- 2 mM. These results indicate the presence of Cl/OH and Cl/HCO3 exchange, and Cl/HCO3 exchange trans-stimulated by Na. There was no significant effect of K gradients in the presence or absence of valinomycin, suggesting lack of significant K/Cl cotransport and Cl conductance under experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献