首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

2.
Leucine-proton cotransport system in Chang liver cell   总被引:1,自引:0,他引:1  
The stimulatory effect of an inward H+ gradient on the Na+-independent L-leucine uptake by the plasma membrane vesicles from Chang liver cells (Mohri, T., Mitsumoto, Y., and Ohyashiki, T. (1983) Biochem. Int. 7, 159-167) has been shown to be due to the increase of the Km value without changing the Vmax value in the transport kinetics. The uptake of leucine by the vesicles is accompanied by intravesicular acidification, and a stimulated uptake of leucine by the countertransport with a high concentration of leucine in the vesicles enhances the acidification. All of these uptakes of leucine and proton and their stimulations are amplified by imposing an inward proton gradient. These results suggest appreciably different affinities of proton for the leucine transport carrier in the inner and outer sides of the plasma membrane. A rapid decrease in the cytoplasmic pH was observed only in the first minute of incubation of intact cells with leucine in Na+-containing medium. But the leucine-dependent decrease of the cytoplasmic pH persisted longer when either Na+ in the medium was replaced by choline or amiloride was present along with Na+. Addition of amiloride to Na+-containing medium was inhibitory on the leucine uptake of cells, without effect on the early phase of glycine uptake. We conclude that Chang liver cells are provided in their plasma membrane with an amino acid-H+ cotransport system, and this is coupled to the amiloride-sensitive Na+/H+ exchange system.  相似文献   

3.
In the presence of Na+, alpha-aminoisobutyrate was transported by saturable and non-saturable processes into R3230AC mammary tumour cells isolated by enzymic treatment. Eadie-Hofstee analysis for the saturable process gave a curvilinear plot, suggesting that transport occurred by more than one carrier. In the absence of Na+, alpha-aminoisobutyrate was also transported by both saturable and non-saturable processes. This Na+-independent saturable process gave a linear plot according to Eadie-Hofstee analysis: V, 708 +/- 105 pmol/min per 5 X 10(6) cells; Km, 0.36 +/- 0.33 mM (mean +/- S.E.M.). Subtracting alpha-aminoisobutyrate entry in the absence of Na+ from total alpha-aminoisobutyrate uptake (in the presence of Na+) showed the presence of another saturable process (Na+-dependent), accounting for 75% of total alpha-aminoisobutyrate uptake. This component gave a linear Eadie-Hofstee plot: V, 2086 +/- 213; Km, 1.75 +/- 0.16 alpha-(Methylamino)isobutyrate, a substrate specifically taken up by the A system, inhibited 80% of alpha-aminoisobutyrate entry. The presence of both alhpa-(methylamino)isobutyrate and phenylalanine inhibited alpha-aminoisobutyrate entry completely. 2-Aminobicyclo[2.2.1]heptane-2-carboxylate, an analogue specifically taken up by the Na+-independent system, inhibited completely the Na+-independent entry of alpha-aminoisobutyrate. In the presence of Na+, the distribution ratio, which is defined as the amino acid concentration in the intracellular space divided by that in the incubation medium for alpha-aminoisobutyrate, at 90 min was 19, and in the absence of Na+ at 60 min was 5. These concentrative processes were sensitive to the metabolic inhibitor pentachlorophenol. The Na+-dependent, but not the Na+-independent, alpha-aminoisobutyrate uptake was increased in cells from diabetic rats. This was primarily due to an increase in the V for the Na+-dependent component (164%) with no effect on the Km. We conclude, therefore, that alpha-aminoisobutyrate entry into cells from this mammary tumour is mediated by two transport systems, one Na+-dependent and another Na+-independent. Furthermore, the Na+-dependent component of alpha-aminoisobutyrate is sensitive to alterations of insulin in vivo.  相似文献   

4.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

5.
Leucine transport into membrane vesicles obtained from Chang liver cells was stimulated by an inward H+ gradient. The stimulatory effect of the proton gradient on the rate of leucine uptake (1 min) was inhibited by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. When the vesicles had been preloaded with a high concentration of KCl, addition of valinomycin stimulated leucine uptake by the vesicles, showing that the leucine transport is dependent on potential gradient. Leucine-coupled H+ accumulation inside the vesicles was confirmed by measuring leucine dependent quenching of the fluorescence of 9-aminoacridine added to medium. These results imply that electrochemical gradient of proton can serve as a driving force for leucine transport across the cell membrane and proton movement is coupled to leucine transport.  相似文献   

6.
A Klip  E Gagalang  W J Logan 《FEBS letters》1983,152(2):171-174
Membrane vesicles of L6 myoblasts were prepared in order to study the amino acid transport system A. The role of the membrane in the adaptive response of transport to amino acid-supplementation was assessed. The membranes, prepared by N2 cavitation, displayed Na+ (but not K+)-dependent L-proline uptake. An overshoot of L-[3H]proline uptake was observed after exposure of the vesicles to an inward Na+ gradient. Isolated membrane vesicles loaded with 50 microM proline displayed countertransport (stimulation of proline uptake). It is concluded that the adaptive decrease of proline uptake observed in amino acid-supplemented cells cannot be accounted for by trans-inhibition of transport.  相似文献   

7.
Active transport of dipeptides in rabbit renal brush-border membrane vesicles is energized by an inward-directed H+ gradient rather than a Na+ gradient. We examined the effects of treatment of membrane vesicles with diethylpyrocarbonate (DEP), a reagent specific for histidyl groups, on this H+ gradient-dependent dipeptide uptake. DEP inhibited the uptake of all three dipeptides studied, Gly-sarcosine, Gly-Gly, and Gly-Pro (Ki = 0.6-0.9 mM), and the inhibition was noncompetitive. The dipeptide transporter could be protected from DEP inhibition by the presence of dipeptide substrates during the treatment of the vesicles with the inhibitor, whereas leucine plus Na+ failed to offer the protection. Na+-dependent leucine uptake was also inhibited by DEP (Ki = 2.5 mM) and the amino acid transporter could be protected from the inhibition by leucine plus Na+, but not by dipeptides. Treatment of membrane vesicles with the thiol group-specific reagents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole,3-bromopyruvate, p-chloromercuribenzenesulfonic acid, and N-ethylmaleimide, also inhibited the H+ gradient-dependent dipeptide uptake. The potency of their inhibition was in the order: 7-chloro-4-nitrobenz-2-oxa-1,3-diazol greater than p-chloromercuribenzenesulfonic acid greater than 3-bromopyruvate greater than N-ethylmaleimide. The inhibition could be reversed in some cases by treatment of the membrane vesicles with reducing agents such as 2,3-dimercaptopropanol following incubation with the inhibitors. Dipeptide substrates could protect the dipeptide transporter from the inhibition. We conclude that histidyl and thiol groups are present at or near the substrate-binding site of the rabbit renal dipeptide transporter.  相似文献   

8.
Membrane vesicles isolated from untransformed Balb/c and Swiss mouse fibroblasts and their SV 40-transformed derivatives were shown to catalyze carrier-mediated, intravesicular uptake of alpha-aminoisobutyric acid and D-glucose. Concentrative uptake of alpha-aminoisobutyric acid required the presence of a Na+-gradient (external greater than internal) and could occur independently of endogenous (Na+ + K+)ATPase activity. A K+ diffusion gradient (internal greater than external) in the presence of valinomycin, or the addition of the Na+ salt of a highly permeant anion, conditions expected to create an interior-negative membrane potential stimulated Na+-gradient-dependent uptake, suggesting this process is electrogenic. D-Glucose uptake was nonconcentrative and did not require ion gradients or metabolic conversion. Na+ gradient-dependent transport of alpha-aminoisobutyric acid was reduced both in initial rate and extent of uptake in vesicles from confluent untransformed cells and increased in those from SV 40-transformed cells, compared with activities observed in vesicles from proliferating untransformed cells. No changes in D-glucose carrier activity were observed when assayed at low glucose concentrations.  相似文献   

9.
Neural cell membranes naturally contain a large amount of polyunsaturated fatty acid, but the functional significance of this is unknown. An increase in membrane polyunsaturation has been shown previously to affect the high-affinity transport systems for choline and glycine in cultured human Y79 retinoblastoma cells. To test the generality of membrane polyunsaturation effects on transport, we investigated the uptake of other putative neurotransmitters and amino acids by these cells. Taurine, glutamate, and leucine were taken up by both high- and low-affinity transport systems, whereas serine, gamma-aminobutyrate, and alpha-aminoisobutyrate were taken up only by low-affinity systems. The high-affinity taurine and glutamate and low-affinity serine uptake systems were Na+ dependent. Arachidonic acid (20:4) supplementation of Y79 cells produced enrichment of all the major microsomal phosphoglycerides with 20:4, while docosahexaenoic acid (22:6) supplementation produced large increases in the 22:6 content of all fractions except the inositol phosphoglycerides. Enrichment with these polyunsaturated fatty acids facilitated taurine uptake by lowering the K'm of its high-affinity transport system. By contrast, enrichment with oleic acid did not affect taurine uptake. Glutamate, leucine, serine, gamma-aminobutyrate, and alpha-aminoisobutyrate uptake were not affected when the cells were enriched with any of these fatty acids. These findings demonstrate that only certain transport systems are sensitive to the polyunsaturated fatty acid content of the retinoblastoma cell membrane. The various transport systems either respond differently to changes in membrane lipid unsaturation, or they are located in lipid domains that are modified to different extents by changes in unsaturation.  相似文献   

10.
J Moffett  M Jones  E Englesberg 《Biochemistry》1987,26(9):2487-2494
Membrane vesicles were prepared from CHO-K1 and alanine-resistant transport mutants, alar4 and alar4-H3.9. Alar4 is a constitutive mutant of the A system, and alar4-H3.9, derived from alar4, may be the result of amplification of a gene coding for an A-system transporter. Under conditions in which the same membrane potential (interior negative) and Na+ gradient were employed, the mutant vesicles show increases in the A system over that of the parental CHO-K1 cell line, paralleling, but not equivalent to, that found in whole cells. L-system and 5'-nucleotidase activities of these vesicles were similar, indicating that the increased A-system activity of the mutant vesicles is not due to the differential enrichment of the A system in these vesicles. The membrane potential was produced by a K+ diffusion gradient (internal greater than external) in the presence of valinomycin or by the addition of a Na+ salt of a highly permeant anion such as SCN-. Monensin was employed to study the effect of the Na+ gradient on transport and membrane potential. The latter was determined by measuring the uptake of tetraphenylphosphonium ion. A negative membrane potential determines the concentrative ability and the initial velocity of the A system in these vesicles. The concentration of external Na+ has a stimulatory effect on the initial velocity of this system. However, the Na+ gradient (external greater than internal) has no effect on the initial velocity or the membrane potential when the potential is set by valinomycin and high internal K+. Little if any ASC system could be detected in vesicles from CHO-K1.  相似文献   

11.
The transport of taurine into membrane vesicles prepared from neuroblastoma x glioma hybrid cells 108CC5 was studied. A great part of the taurine uptake by the membrane preparation is due to the transport into an osmotically sensitive space of membrane vesicles. Taurine uptake by membrane vesicles is an active transport driven by the concentration gradient of Na+ across the membrane (outside concentration greater than inside). The Km value of 36 microM for Na+-dependent taurine uptake indicates a high-affinity transport system. The rate of taurine transport by the membrane vesicles is enhanced by the K+ gradient (inside concentration greater than outside) and the K+ ionophore valinomycin. Taurine transport is inhibited by several structural analogs of taurine: hypotaurine, beta-alanine, and taurocyamine. All these results indicate that the taurine transport system of the membrane vesicles displays properties almost identical to those of intact neuroblastoma X glioma hybrid cells.  相似文献   

12.
R E MacDonald  L K Lanyi 《Biochemistry》1975,14(13):2882-2889
Halabacterium halobium cell envelope vesicles accumulate L-[14-C]leucine during illumination, against a large concentration gradient. Leucine uptake requires Na-+ and is optimal in KCl-loaded vesicles resuspended in KCl-NaCl solution (1.5 M:1.5 M). Half-maximal transport is seen at 1 X 10-minus 6 M leucine. In the dark the accumulated leucine is rapidly and exponentially lost from the vesicles. The action spectrum and the light-intensity dependence indicate that the transport is related to the extrusion of protons, mediated by bacteriorhodopsin. Since light gives rise to both a pH gradient and an opposing transmembrane potential (interior negative), it wass responsible for providing the energy for leucine transport. The following results were obtained under illumination: (1) membrane-permeant cations and valinomycin or gramicidin greatly inhibited leucine transport without altering the pH gradient; (2) buffering both inside and outside the vesicles eliminated the pH gradient while enhancing leucine transport; (3) dicyclohexylcarbodiimide increased the pH gradient without affecting leucine transport; (4) arsenate did not inhibit leucine uptake. A diffusion potential, established by adding valinomycin to KCl-loaded vesicles, caused leucine influx in the dark. These results suggest that the leucine transport system is not coupled to ATP hydrolysis, and responds to the membrane potential rather than to the pH gradient. The Na-+ dependence of the transport and the observation that a small NaCl pulse causes transient leucine influx in the dark in KCl-loaded vesicles, resuspended in KCl, even in the presence of p-trifluoromethoxycarbonylcyanide phenylhydrazone or with buffering, suggest that the translocation of leucine is facilitated by symport with Na-+.  相似文献   

13.
Amino acid and K(+) transport during development has been investigated in hepatocyte monolayer cultures with either alpha-amino[1-(14)C]isobutyrate or (86)Rb(+) used as a tracer for K(+). Parenchymal cells from neo- and post-natal rat livers have been isolated by an improved non-perfusion technique [Bellemann, Gebhardt & Mecke (1977)Anal.Biochem.81, 408-415], and the resulting hepatocyte suspensions purified from non-hepatocytes before inoculation. In the presence of Na(+) (Na(+)-dependent component), the rates of amino acid uptake in neonatal hepatocytes were markedly enhanced compared with cells from 30-day-old rats. When Na(+) was replaced by choline (Na(+)-independent component) the accumulation of alpha-aminoisobutyrate was decreased and it was not affected by the age of the animals. Kinetic analysis of Na(+)-dependent alpha-aminoisobutyrate transport revealed the existence of a high-affinity low-K(m) component (K(m)0.91mm) with a V(max.) of 2.44nmol/mg of protein per 4min, which later declined gradually with progressive development. Rates of Rb(+) transport were concomitantly enhanced in neonatal hepatocytes and thereafter declined with postnatal age. The increased Rb(+) influx was effectively inhibited by ouabain and reflected elevated activity of the electrogenic Na(+)/K(+)-pump during early stages of development. Kinetic evaluation of the enhanced rates of Rb(+) uptake indicates multiple and co-operative binding sites of the enzyme involved in the Rb(+) uptake, and the transport system is positively co-operative (the Hill coefficient h is >1.0). In short, amino acid transport in neonatal rat hepatocytes is increased as a result of an existing low-K(m) component for the Na(+)-dependent alpha-aminoisobutyrate uptake, which endows the hepatocytes with a high capability for concentrating amino acids at low ambient values. The concomitant enhancement of K(+) transport reflects changes in the electrochemical gradient for Na(+) across the hepatocellular membrane and, along with this, presumably alterations in the membrane potential; the latter might be the driving force for the enhanced alpha-aminoisobutyrate transport in the alanine-preferring system during postnatal age.  相似文献   

14.
We have previously shown GSH transport across the blood-brain barrier in vivo and expression of transport in Xenopus laevis oocytes injected with bovine brain capillary mRNA. In the present study, we have used MBEC-4, an immortalized mouse brain endothelial cell line, to establish the presence of Na+-dependent and Na+-independent GSH transport and have localized the Na+-dependent transporter using domain-enriched plasma membrane vesicles. In cells depleted of GSH with buthionine sulfoximine, a significant increase of intracellular GSH could be demonstrated only in the presence of Na+. Partial but significant Na+ dependency of [35S]GSH uptake was observed for two GSH concentrations in MBEC-4 cells in which gamma-glutamyltranspeptidase and gamma-glutamylcysteine synthetase were inhibited to ensure absence of breakdown and resynthesis of GSH. Uniqueness of Na+-dependent uptake in MBEC-4 cells was confirmed with parallel uptake studies with Cos-7 cells that did not show this activity. Molecular form of uptake was verified as predominantly GSH, and very little conversion of [35S]cysteine to GSH occurred under the same incubation conditions. Poly(A)+ RNA from MBEC expressed GSH uptake with significant (approximately 40-70%) Na+ dependency, whereas uptake expressed by poly(A)+ RNA from HepG2 and Cos-1 cells was Na+ independent. Plasma membrane vesicles from MBEC were separated into three fractions (30, 34, and 38% sucrose, by wt) by density gradient centrifugation. Na+-dependent glucose transport, reported to be localized to the abluminal membrane, was found to be associated with the 38% fraction (abluminal). Na+-dependent GSH transport was present in the 30% fraction, which was identified as the apical (luminal) membrane by localization of P-glycoprotein 170 by western blot analysis. Localization of Na+-dependent GSH transport to the luminal membrane and its ability to drive up intracellular GSH may find application in the delivery of supplemented GSH to the brain in vivo.  相似文献   

15.
Growth factors, mitogens, and malignant transformation can alter the rate of amino acid uptake in mammalian cells. It has been suggested that the effects of these stimuli on proliferation are mediated by activation of Na+/H+ exchange. In lymphocytes, Na+/H+ exchange can also be activated by phorbol esters and by hypertonic media. To determine the relationship between the cation antiport and amino acid transport, we tested the effects of these agents on the uptake of alpha-aminoisobutyric acid (AIB), methyl-AIB, proline, and leucine in rat thymocytes. Both 12-O-tetradecanoylphorbol-13-acetate (TPA) and hypertonicity stimulated amino acid uptake through system A (AIB, proline, and methyl-AIB). In addition, TPA, but not hypertonicity, also elevated leucine uptake. The stimulation of the Na+ -dependent system A was not due to an increased inward electrochemical Na+ gradient. The effects of TPA and hypertonic treatment were not identical: Stimulation of AIB uptake by TPA was observed within minutes, whereas at least 1 hr was required for the effect of hypertonicity to become noticeable. Moreover, stimulation by hypertonicity but not that by TPA, was partially inhibited by cycloheximide, suggesting a role of protein synthesis. That stimulation of Na+/H+ exchange does not mediate the effects on amino acid transport is suggested by two findings: 1) the stimulation of AIB uptake was not prevented by concentrations of amiloride or of 5-(N,N-disubstituted) amiloride analogs that completely inhibit the Na+/H+ antiport and 2) conditions that mimic the effect of the antiport, namely, increasing [Na+]i or raising pHi failed to stimulate amino acid uptake. Thus, in lymphocytes, activation of Na+/H+ exchange and stimulation of amino acid transport are not casually related.  相似文献   

16.
Fetal calf serum and 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the rate of leucine uptake by Chang liver cells in Na+-containing medium. Addition of monensin to the incubation medium also increased the leucine uptake. All these agents were capable of raising the cytoplasmic pH, which was blocked by a prior addition of amiloride or removing Na+ from assay medium, suggesting activation of Na+-H+ exchange across the cell membrane by fetal calf serum and TPA. The stimulation of leucine uptake by monensin and fetal calf serum was blocked completely or incompletely by addition of ouabain or amiloride. The basal and fetal-calf-serum- or TPA-stimulated leucine uptake was extensively depressed by the presence of an excess of 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid in the incubation medium. Based on these results it is proposed that the transport of leucine by the system L is stimulated by fetal calf serum and TPA with a high concentration of Na+ outside the cells as a result of alkalinization of the cytoplasm and coordinated activation of (Na+ + K+)-ATPase by these stimulators to maintain the transmembrane Na+ gradient and also hyperpolarize the cell membrane.  相似文献   

17.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

18.
In freshly prepared uninjected folliculated oocytes, Na(+)-independent leucine uptake is mediated predominantly by a system L-like transport system. Removal of follicular cells, however, results in an irreversible loss of this transport activity. When total poly(A)+ mRNA derived from Chinese hamster ovary (CHO) cells was injected into prophase-arrested stage V or VI Xenopus laevis oocytes, enhanced expression of Na(+)-independent leucine transport was observed. The injected mRNAs associated with increased levels of leucine uptake were between 2 and 3 kb in length. The newly expressed leucine transport activity exhibited important differences from the known characteristics of system L, which is the dominant Na(+)-independent leucine transporter in CHO cells as well as in freshly isolated folliculated oocytes. The CHO mRNA-dependent leucine uptake in oocytes was highly sensitive to the cationic amino acids lysine, arginine, and and ornithine (> 95% inhibition). As with the leucine uptake, an enhanced lysine uptake was also observed in size-fractionated CHO mRNA-injected oocytes. The uptakes of leucine and lysine were mutually inhibitable, suggesting that the newly expressed transporter was responsible for uptakes of both leucine and lysine. The inhibition of uptake of lysine by leucine was Na+ independent, thus clearly distinguishing it from the previously reported endogenous system y+ activity. Furthermore, the high sensitivity to tryptophan of the CHO mRNA-dependent leucine transport was in sharp contrast to the properties of the recently cloned leucine transport-associated gene from rat kidney tissue, although leucine transport from both sources was sensitive to cationic amino acids. Our results suggest that there may be a family of leucine transporters operative in different tissues and possibly under different conditions.  相似文献   

19.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

20.
Cation coupling to melibiose transport in Salmonella typhimurium.   总被引:2,自引:2,他引:0       下载免费PDF全文
Melibiose transport in Salmonella typhimurium was investigated. Radioactive melibiose was prepared and the melibiose transport system was characterized. Na+ and Li+ stimulated transport of melibiose by lowering the Km value without affecting the Vmax value; Km values were 0.50 mM in the absence of Na+ or Li+ and 0.12 mM in the presence of 10 mM NaCl or 10 mM LiCl. The Vmax value was 140 nmol/min per mg of protein. Melibiose was a much more effective substrate than methyl-beta-thiogalactoside. An Na+-melibiose cotransport mechanism was suggested by three types of experiments. First, the influx of Na+ induced by melibiose influx was observed with melibiose-induced cells. Second, the efflux of H+ induced by melibiose influx was observed only in the presence of Na+ or Li+, demonstrating the absence of H+-melibiose cotransport. Third, either an artificially imposed Na+ gradient or membrane potential could drive melibiose uptake in cells. Formation of an Na+ gradient in S. typhimurium was shown to be coupled to H+ by three methods. First, uncoupler-sensitive extrusion of Na+ was energized by respiration or glycolysis. Second, efflux of H+ induced by Na+ influx was detected. Third, a change in the pH gradient was elicited by imposing an Na+ gradient in energized membrane vesicles. Thus, it is concluded that the mechanism for Na+ extrusion is an Na+/H+ antiport. The Na+/H+ antiporter is a transformer which converts an electrochemical H+ gradient to an Na+ gradient, which then drives melibiose transport. Li+ was inhibitory for the growth of cells when melibiose was the sole carbon source, even though Li+ stimulated melibiose transport. This suggests that high intracellular Li+ may be harmful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号