首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nantenine, an aporphine alkaloid, on ATPase K+-dependent dephosphorylation was evaluated using p-nitrophenylphosphate (p-NPP) as substrate. Basal K+-p-NPPase activity was significantly increased with 3 x 10(-4) M, remained unchanged with 3 x 10(-6) M, 3 x 10(-5) M but was reduced with 7.5 x 10(-4) M and 1 x 10(-3) M nantenine, whereas Mg2+-p-NPPase activity was not modified. Kinetic studies showed that K+-p-NPPase inhibition by nantenine is competitive to KCl but non-competitive to substrate p-NPP, whereas K+-p-NPPase stimulation by nantenine is non-competitive to KCl but competitive to p-NPP. These data suggest that there may be two acceptor sites for nantenine in p-NPPase, one eliciting stimulation and the other inhibition of K+-dependent p-NPP hydrolysis. Considering the biphasic action of nantenine on seizures and the correlation between decreased ATPase activity and seizure development, alkaloid anticonvulsant effect observed at low nantenine doses is attributable to the stimulation of phosphatase activity whereas the convulsant effect at high alkaloid doses seems related to Na+, K+-ATPase inhibition.  相似文献   

2.
Some properties of glutamine synthetase I (GSI) and GSII are described for a fast-growing Rhizobium sp. (Rhizobium trifolii T1), a slow-growing Rhizobium sp. (Rhizobium japonicum USDA 83), and Agrobacterium tumefaciens C58. GSII of the fast-growing Rhizobium sp. and GSII of the Agrobacterium sp. were considerably more heat labile than GSII of the slow-growing Rhizobium sp. As previously shown in R. japonicum 61A76, GSI became adenylylated rapidly in all species tested in response to ammonium. GSII activity disappeared within one generation of growth in two of the strains, but the disappearance of GSII activity required two generations in another. Isoactivity points for transferase assay, which were derived from the pH curves of adenylylated GSI and deadenylylated GSI, were approximately pH 7.8 for both R. trifolii and A. tumefaciens. No isoactivity point was found for R. japonicum under the standard assay conditions used. When the feedback inhibitor glycine was used to inhibit differentially the adenylylated GSI and deadenylylated GSI of R. japonicum, an isoactivity point was observed at pH 7.3. Thus, the transferase activity of GSI could be determined independent of the state of adenylation. A survey of 23 strains of bacteria representing 11 genera indicated that only Rhizobium spp. and Agrobacterium spp. contained GSII. Thus, this enzyme appears to be unique for the Rhizobiaceae.  相似文献   

3.
Frankia sp. strain CpI1 has two glutamine synthetases designated GSI and GSII. Biosynthetic activities of both GSI and GSII were strongly inhibited by ADP and AMP. Alanine, aspartate, glycine and serine inhibited both GSI and GSII activities, whereas asparagine and lysine inhibited only slightly. Glutamine inhibited GSII but did not affect GSI. Since GSII is more heat labile than GSI, their relative heat stabilities can be used to determine their contribution to total GS activity. In cells grown on ammonia and on glutamine as sole combined-nitrogen sources most GS activity detected in crude extracts was due to GSI. In cells transferred to glutamate, GSI accounted for all GS activity in the first 15 h and then heat labile GSII was induced and increased to account for 40% of total GS activity within 50 h. Transfer of N2-fixing cells to ammonia-containing medium led to a rapid decrease of GSII and a slow increase of GSI activity within 24 h. Conversely, when ammonia-grown cells were transferred to combined nitrogen-free medium, GSI activity gradually decreased and GSII increased before total activity leveled off in 50 h. GSII appears to be an ammonia-assimilating enzyme specifically synthesized during perceived N-starvation of Frankia cells.  相似文献   

4.
In the present work we have partially characterized an ecto-phosphatase activity in Crithidia deanei, using viable parasites. This enzyme hydrolyzed p-nitrophenylphosphate at a rate of 3.55 +/- 0.47 nmol Pi/h x 10(8) cells. The dependence on p-NPP concentration shows a normal Michaelis-Menten kinetics for this phosphatase activity and the value of the apparent Km for p-NPP was 5.35 +/- 0.89 mM. This phosphatase activity was inhibited by the product of the reaction, the inorganic phosphate. Experiments using classical inhibitors of acid phosphatases, such as ZnCl2 and sodium fluoride, as well as inhibitors of phosphotyrosine phosphatase, such as sodium orthovanadate and ammonium molybdate, showed a decrease in this phosphatase activity, with different patterns of inhibition.  相似文献   

5.
Summary In Drosophila melanogaster there are two glutamine synthetase (GS) (EC 6.3.1.2) isozymes. They are called GSI and GSII. The two enzymes have different subunits and different genetic determination. A DNA fragment that comprises 80% of the coding region of the glutamine synthetase gene of Chinese hamster ovary (CHO) cells allowed the identification and cloning of an homologous DNA fragment of Drosophila. This sequence is located at the 10B8-11 region on the X chromosome. Dose variation of a chromosomal segment from 9F3 to 10C1-2, which encompasses the 10B region, leads to proportional variations of GSII without apparently influencing the amount of GSI.  相似文献   

6.
Evidence from in vitro and in vivo studies showed that in Rhizobium phaseoli ammonium is assimilated by the glutamine synthetase (GS)-glutamate synthase NADPH pathway. No glutamate dehydrogenase activity was detected. R. phaseoli has two GS enzymes, as do other rhizobia. The two GS activities are regulated on the basis of the requirement for low (GSI) or high (GSII) ammonium assimilation. When the 2-oxoglutarate/glutamine ratio decreases, GSI is adenylylated. When GSI is inactivated, GSII is induced. However, induction of GSII activity varied depending on the rate of change of this ratio. GSII was inactivated after the addition of high ammonium concentrations, when the 2-oxoglutarate/glutamine ratio decreased rapidly. Ammonium inactivation resulted in alteration of the catalytic and physical properties of GSII. GSII inactivation was not relieved by shifting of the cultures to glutamate. After GSII inactivation, ammonium was excreted into the medium. Glutamate synthase activity was inhibited by some organic acids and repressed when cells were grown with glutamate as the nitrogen source.  相似文献   

7.
The angiotensin I-coverting enzyme (peptidyldipeptide hydrolase, EC 3.4.15.1) was isolated from both guinea pig lung and serum; Km and V values were determined using both angiotensin I and hippurylhistidylleucine as substrates. Km values for the lung enzyme were 3.1 mM for hippurylhistidylleucine hippurylhistidylleucine and 0.076 mM for angiotensin I. Inhibition studies were performed and I50 values were obtained with the following inhibitors: angiotensin II (lung, 1.9 - 10(-5) M; serum, 1.7 - 10(-5) M), bradykinin (lung, 2.6 - 10(-6) M; serum, 2.1 - 10(-6) M), and pyrrolidone-Lys-Trp-Ala-Pro (lung, 7.9 - 10(-8) M; serum, 5.6 - 10(-8) M). Both enzymes were glycoproteins and were inhibited by concanavalin A. A maximum inhibition of 35% initial enzymatic activity was observed for both enzymes at a concanavalin A concentration of 4 - 10(-4) M suggesting that the sugar moieties of each enzyme are similar. Both enzymes required NaCl for activity and were inhibited by EDTA. A comparison of kinetic and inhibition properties indicates that both enzymes are quite similar.  相似文献   

8.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

9.
The relationship between ammonium assimilation and ammonium export has been studied in free-living, N2-fixing Rhizobium sp. 32H1. After 55 to 67 h of microaerobic growth under a gas phase of 0.2% O2 – 1.0% CO2 – 98.8% Ar high levels of nitrogenase were observed concomitant with a slightly adenylylated glutamine synthetase (GSI) and some glutamine synthetase (GSII) activity. However, after growth of 89 h, or longer, GSI became adenylylated and the level of GSII had decreased. When the gas phase was shifted to 0.2% O2 – 1.0% CO2 – 98.8% N2, a lag was observed before ammonium export could be detected in the 55 to 67 h cultures. No lag in ammonium export was observed in the cultures previously grown for 89 h. The onset of ammonium export in the 55 to 67 h cultures was found to correlate with the adenylylation state of GSI. There appeared to be no correlation between the level of GSII and the export of ammonium. Neither an increase in the adenylylation level of GSI nor ammonium export was observed when the 55 to 67 h cultures were maintained under the Ar gas mixture.Abbreviations GOGAT Glutamate synthase - GS glutamine synthetase - BES [N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid] - CTAB cetyltrimethylammonium bromide - MES [2-(N-morpholino)-ethane sulfonic acid]  相似文献   

10.
L D Barnes  C A Culver 《Biochemistry》1982,21(24):6123-6128
A new enzyme that hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate has been purified by a factor of 250 from the acellular slime mold Physarum polycephalum. Activity was assayed radioisotopically with [3H]Ap4A. Isolation of the enzyme was facilitated by dye-ligand chromatography. The enzyme symmetrically hydrolyzes Ap4A to ADP and exhibits biphasic kinetics for the substrate with values for the apparent Km of 2.6 micro M and 37 micro M. The two values of Vmax differ by a factor of 10. Mg2+, Ca2+, and other divalent cations inhibit the activity with 40-80% inhibition occurring at 0.5 mM. Mg2+, at 0.5 mM, decreases both values of Vmax by 50%, decreases the low Km value by about 30%, and increases the high Km value by about 100%. (Ethylenedinitrilo)tetraacetic acid (EDTA) and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA), at 10 mM, inhibit the activity by 50%. ADP, ATP, Ap4, and Gp4 are equipotent inhibitors with 50% inhibition occurring at 30 micro M. AMP is a relatively weak inhibitor. The molecular weight of the enzyme is 26000 on the basis of elution of activity from a calibrated Sephadex G-75 column.  相似文献   

11.
When grown under aerobic conditions, Rhizobium japonicum 61A76 contains two forms of glutamine synthetase, GSI and GSII, as previously described. In contrast, cells grown under the low O2 tensions required for nitrogenase synthesis contain only GSI. GSII activity disappears completely at O2 levels below 0.4%. GSI activity decreases by only 50%, but the enzyme appears to become highly adenylylated under the low O2 tensions required for nitrogenase synthesis.  相似文献   

12.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   

13.
Glutamine synthetase exists in at least two related forms, GSI and GSII, the sequences of which have been used in evolutionary molecular clock studies. GSI has so far been found exclusively in bacteria, and GSII has been found predominantly in eukaryotes. To date, only a minority of bacteria, including rhizobia, have been shown to express both forms of GS. The sequences of equivalent internal fragments of the GSI and GSII genes for the type strains of 16 species of rhizobia have been determined and analyzed. The GSI and GSII data sets do not produce congruent phylogenies with either neighbor-joining or maximum-likelihood analyses. The GSI phylogeny is broadly congruent with the 16S rDNA phylogeny for the same bacteria; the GSII phylogeny is not. There are three striking rearrangements in the GSII phylograms, all of which might be explained by horizontal gene transfer to Bradyrhizobium (probably from Mesorhizobium), to Rhizobium galegae (from Rhizobium), and to Mesorhizobium huakuii (perhaps from Rhizobium). There is also evidence suggesting intrageneric DNA transfer within Mesorhizobium. Meta-analysis of both GS genes from the different genera of rhizobia and other reference organisms suggests that the divergence times of the different rhizobium genera predate the existence of legumes, their host plants.  相似文献   

14.
The aim of this work was to investigate the influence of [PdCl4]2-, [PdCl(dien)]+ and [PdCl(Me4dien)]+ complexes on Na+ / K+-ATPase activity. The dose-dependent inhibition curves were obtained in all cases. IC50 values determined by Hill analysis were 2.25 x 10(-5) M, 1.21 x 10(-4) M and 2.36 x 10(-4) M, respectively. Na+ / K+-ATPase exhibited typical Michelis-Menten kinetics in the presence of Pd(II) complexes. Kinetic parameters (Vmax, Km) derived using Eadie-Hofstee transformation indicated a noncompetitive type of Na+ / K+-ATPase inhibition. The inhibitor constants (Ki) were determined from Dixon plots. The order of complex affinity for binding with Na+ / K+-ATPase, deducted from Ki values, was [PdCl4]2- > [PdCl(dien)]+ > [PdCl(Me4dien)]+. The results indicated that the potency of Pd(II) complexes to inhibit Na+/ K +-ATPase activity depended strongly on ligands of the related compound. Furthermore, the ability of SH-donor ligands, L-cysteine and glutathione, to prevent and recover the Pd(II) complexes-induced inhibition of Na+ / K+-ATPase was examined. The addition of 1 mM L-cysteine or glutathione to the reaction mixture before exposure to Pd(II) complexes prevented the inhibition by increasing the IC50 values by one order of magnitude. Moreover, the inhibited enzymatic activity was recovered by addition of SH-donor ligands in a concentration-dependent manner.  相似文献   

15.
Homogeneous (according to disc gel electrophoresis data) ATP: D-pantothenate-4'-phosphotransferase (pantothenate kinase, EC 2.7.1.33) was obtained from rat liver cytosol of heterogeneous stock rats. The enzyme was purified 199-fold with a 9.3% yield. The enzyme was relatively unstable but retained its activity in the presence of 10% glycerol containing 5.10(-4) M ATP over 10 days at 4 degrees C. The pH optimum was 6.5; the apparent Km values were equal to 1.2 X 10(-5) M and 1.4 X 10(-3) M for pantothenate and ATP, respectively, at the ATP/Mg2+ ratio of 1. Pantetheine produced a competitive inhibition of pantothenate kinase. Pantethine or pantetheine disulfide did not inhibit the enzyme.  相似文献   

16.
Guanine deaminase (EC 3.5.4.3, guanine aminohydrolase [GAH]) was purified 3248-fold from human liver to homogeneity with a specific activity of 21.5. A combination of ammonium sulfate fractionation, and DEAE-cellulose, hydroxylapatite, and affinity chromatography with guanine triphosphate ligand were used to purify the enzyme. The enzyme was a dimer protein of a molecular weight of 120,000 with each subunit of 59,000 as determined by gel filtration and sodium dodecyl sulfate-gel electrophoresis. Isoelectric focusing gave a pI of 4.76. It was found to be an acidic protein, as evidenced by the amino acid analysis, enriched with glutamate, aspartate, alanine and glycine. It showed a sharp pH optimum of 8.0. The apparent Km for guanine was determined to be 1.53 X 10(-5) M at pH 6.0 and 2 X 10(-4) M for 8-azaguanine as a substrate at pH 6.0. The enzyme was found to be sensitive to p-hydroxymercuribenzoate inhibition with a Ki of 1.53 X 10(-5) M and a Ki of 5 X 10(-5) M with 5-aminoimidazole-4-carboxamide as an inhibitor. The inhibition with iodoacetic acid showed only a 7% loss in the activity at 1 X 10(-4) M and a 24% loss at 1 X 10(-3) M after 30 min of incubation, whereas p-hydroxymercuribenzoate incubation for 30 min resulted in a 91% loss of activity at a concentration of 1 X 10(-4) M. Guanine was the substrate for all of the inhibition studies. The enzyme was observed to be stable up to 40 degrees C, with a loss of almost all activity at 65 degrees C with 30 min incubation. Two pKa values were obtained at 5.85 and 8.0. Analysis of the N-terminal amino acid proved to be valine while the C-terminal residue was identified as alanine.  相似文献   

17.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM-500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+ / K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+ / K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 x 10(-6) M / 8.56 x 10(-5) M and 7.06 x 10(-7) M / 1.87 x 10(-5) M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50-500 mM) in the medium assay prior to Na+ / K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+ / K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+ / K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

18.
Glutamine synthetase (GS) activities of Rhizobia were chromatographically resolved into three distinct forms, GSI, GSII, and GSIII on DEAE cellulose, being eluted with 0.3M, 0.5M and 0.8M KCl, respectively. GSIII was the major form inR. leguminosarum andR. phaseoli. InR. meliloti, however, GSI was the major form. The three forms of GS were also distinguished on the basis of (a) rapid heat inactivation of GSII, (b) insensitivity of GSI to inhibitors, (c) marked inhibition of GSII by thymidine, and (d) inability of Zn++ to inhibit GSIII. The three forms of GS are also distinct molecular entities and are unique to Rhizobia.  相似文献   

19.
Ca2+/protein modulator-dependent and -independent guanosine 3':5'-monophosphate (cGMP) phosphodiesterases were separated from hog heart. The protein modulator-free Ca2+/protein modulator-dependent enzyme was partially purified by repeated DEAE-cellulose column chromatography and heat treatment. The final preparation of this enzyme showed no significant basal activity under the standard assay conditions. Lineweaver-Burk plots of the Ca2+/protein modulator-dependent enzyme activity indicated the presence of only a single kinetic form of the enzyme with Km=2.0 X 10(-6) M for for cGMP, whereas the plots for the independent enzyme were anomalous, showing both high and low K m values for cGMP. The Ca2+/protein modulator-dependent enzyme proved relatively stable at 48 degrees C for 1 h, but the independent form lost its activity under the same conditions. Furthermore, 50% inhibition of the dependent enzyme activity, but only 10% inhibition of the independent enzyme activity, was observed with 0.1 mM adenosine 3':5'-monophosphate (cAMP) when 1 muM cGMP was employed as a substrate.  相似文献   

20.
Captopril has been reported to inhibit ouabain-sensitive Na+/K+-ATPase activity in erythrocyte membrane fragments. We investigated the effect of captopril on two physiological measures of Na+/K+ pump activity: 22Na+ efflux from human erythrocytes and K+-induced relaxation of rat tail artery segments. Captopril inhibited 22Na+ efflux from erythrocytes in a concentration-dependent fashion, with 50% inhibition of total 22Na+ efflux at a concentration of 4.8 X 10(-3) M. The inhibition produced by captopril (5 X 10(-3) M) and ouabain (10(-4) M) was not greater than that produced by ouabain alone (65.3 vs. 66.9%, respectively), and captopril inhibited 50% of ouabain-sensitive 22Na+ efflux at a concentration of 2.0 X 10(-3) M. Inhibition by captopril of ouabain-sensitive 22Na efflux was not explained by changes in intracellular sodium concentration, inhibition of angiotensin-converting enzyme or a sulfhydryl effect. Utilizing rat tail arteries pre-contracted with norepinephrine (NE) or serotonin (5HT) in K+-free solutions, we demonstrated dose-related inhibition of K+-induced relaxation by captopril (10(-6) to 10(-4) M). Concentrations above 10(-4) M did not significantly inhibit K+-induced relaxation but did decrease contractile responses to NE, although not to 5HT. Inhibition of K+-induced relaxation by captopril was not affected by saralasin, teprotide or indomethacin. We conclude that captopril can inhibit membrane Na+/K+-ATPase in intact red blood cells and vascular smooth muscle cells. The mechanism of pump suppression is uncertain, but inhibition of ATPase should be considered when high concentrations of captopril are employed in physiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号