共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome sequence analysis of Xanthomonas
oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this
study, biochemical analyses of xanthan produced by a defined set of X. oryzae
gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization
and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL.
In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work. 相似文献
2.
3.
Lim SH So BH Wang JC Song ES Park YJ Lee BM Kang HW 《Journal of microbiology (Seoul, Korea)》2008,46(2):214-220
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation. 相似文献
4.
Xanthomonas oryzae pv. oryzae is the pathogen that causes bacterial leaf blight in rice. Bacterial leaf blight is the main cause for severe rice underproduction
in many countries. However, with conventional methods it is difficult to quickly and reliably distinguish this pathogen from
other closely related pathogenic bacteria, especially X. oryzae pv. oryzicola, the causal organism of bacterial leaf streak in rice. We have developed a novel and highly sensitive real-time method for
the identification of this specific bacteria based on a TaqMan probe. This probe is designed to recognize the sequence of
a putative siderophore receptor gene cds specific to X. oryzae pv. oryzae, and can be identified from either a bacterial culture or naturally infected rice seeds and leaves in only 2 h. The sensitivity
of the method is 100 times higher than that of the current polymerase chain reaction (PCR) gel electrophoresis method for
diagnosis. 相似文献
5.
Shen Chen Zhanghui Huang Liexian Zeng Jianyuan Yang Qiongguang Liu Xiaoyuan Zhu 《Molecular breeding : new strategies in plant improvement》2008,22(3):433-441
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating disease in rice worldwide. The resistance gene Xa7, which provides dominant resistance against the pathogen with avirulence (Avr) gene AvrXa7, has proved to be durably resistant to BB. A set of SSR markers were selected from the “gramene” database based on the Xa7 gene initial mapping region on chromosome 6. These markers were used to construct a high-resolution genetic map of the chromosomal
region surrounding the Xa7 gene. An F2 mapping population with 721 highly susceptible individuals derived from a cross between the near isogenic lines (NILs) IRBB7
and IR24 were constructed to localize the Xa7 gene. In a primary analysis with eleven polymorphic SSR markers, Xa7 was located in approximately the 0.28-cM region. To walk closer to the target gene, recombinant F2 individuals were tested using newly developed STMS (sequence tagged microsatellite) markers. Finally, the Xa7 gene was mapped to a 0.21-cM interval between the markers GDSSR02 and RM20593. The Xa7-linked markers were landed on the reference sequence of cv. Nipponbare through bioinformatics analysis. A contig map corresponding
to the Xa7 gene was constructed. The target gene was assumed to span an interval of approximately 118.5-kb which contained a total of
fourteen genes released by the TIGR Genome Annotation Version 5.0. Candidate-gene analysis of Xa7 revealed that the fourteen genes encode novel domains that have no amino acid sequence similar to other cloned Xa(xa) genes.
Shen Chen and Zhanghui Huang are contributed equally to this work. 相似文献
6.
Liu X Yang Q Lin F Hua L Wang C Wang L Pan Q 《Molecular genetics and genomics : MGG》2007,278(4):403-410
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum
resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis
were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible)
ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed.
The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance
(R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region
anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940
in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference
sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from
the Pita/Pita
2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial
chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map
of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further
characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese
isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning.
Xinqiong Liu and Qinzhong Yang contributed equally to this work. 相似文献
7.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified
and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular
polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99
cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward
glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic
responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and
a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco
(Nicotiana
tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen’s virulence.
L. Chen, B. Hu, and G. Qian contributed equally to this research. 相似文献
8.
Xin Xu N. Hayashi C. T. Wang H. Kato T. Fujimura S. Kawasaki 《Molecular breeding : new strategies in plant improvement》2008,22(2):289-299
The Pik-h gene in rice confers resistance to several races of rice blast fungus (Magnaporthe oryzae), and has been classified as a member of the Pik cluster, one of the most resistance (R) gene-dense regions in the rice genome. However, the loss of a key mutant isolate has long made it difficult to differentiate
Pik-h from other Pik group genes especially from Pik-m. We identified new natural isolates enabling the differentiation between Pik-h and Pik-m genes, and first confirmed the authenticity of the International Rice Research Institute (IRRI) “monogenic” line IRBLkh-K3,
and then fine-mapped the Pik-h gene in the Pik cluster. Using 701 susceptible individuals among 3,060 siblings from a cross of IRBLkh-K3×CO39, the Pik-h region was delimited to 270 kb, the narrowest interval among the Pik group genes reported to date, in the cv. Nipponbare genome. Annotation of this genome region first revealed 6 NBS-LRR type
R-gene analogs (RGAs), clustered within the central 120 kb, as possible counterparts of Pik-h and 6 other Pik group R genes. Interestingly, the Pik-h region and the cluster of RGAs were shown to be located 130 kb and 230 kb apart from Xa4 and Xa2 bacterial blight resistance genes, respectively, once classified as belonging to the Pik cluster. The closest recombination events were limited to the margins of the Pik-h region, and recombination was suppressed in the core interval with the RGA cluster. This fine-mapping, performed in a short
time using an HEGS system, will facilitate utilization of the cluster’s genetic resources and help to elucidate the mechanism
of evolution of R-genes. The presence of natural isolates also confirmed that evolution of Pik-h corresponds to pathogen evolution. 相似文献
9.
Lee YK Yoon BD Yoon JH Lee SG Song JJ Kim JG Oh HM Kim HS 《Applied microbiology and biotechnology》2007,75(3):567-572
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed
into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound
extracted from the E. coli transformant exhibited a different R
f value of 0.52 from B. subtilis C9 or authentic surfactin (R
f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing
activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon. 相似文献
10.
The ankyrin (ANK) gene cluster is a part of a multigene family encoding ANK transmembrane proteins in Arabidopsis thaliana, and plays an important role in protein-protein interactions and in signal pathways. In contrast to other regions of a genome,
the ANK gene cluster exhibits an extremely high level of DNA polymorphism in an ∼5-kb region, without apparent decay. Phylogenetic
analysis detects two clear, deeply differentiated haplotypes (dimorphism). The divergence between haplotypes of accession
Col-0 and Ler-0 (Hap-C and Hap-L) is estimated to be 10.7%, approximately equal to the 10.5% average divergence between A. thaliana and A. lyrata. Sequence comparisons for the ANK gene cluster homologues in Col-0 indicate that the members evolve independently, and that the similarity among paralogues
is lower than between alleles. Very little intralocus recombination or gene conversion is detected in ANK regions. All these characteristics of the ANK gene cluster are consistent with a tandem gene duplication and birth-and-death process. The possible mechanisms for and implications
of this elevated nucleotide variation are also discussed, including the suggestion of balancing selection. 相似文献
11.
Xanthomonas axonopodis pv. glycines produces bacteriocins called glycinecin, and two glycinecin genes, glyA and glyR, were reported previously. In this paper, we describe genomic distribution and variation of the glyR gene revealed by extensive Southern hybridization analysis. In contrast to the glyA gene present only in X. axonopodis pv. glycines, the glyR gene was found to be distributed widely in all the pathovars of Xanthomas genus. It was also found that the glyR gene is a multigene family while the glyA is a single copy gene. Moreover, the copy number and the variation of the glyR multigene are unique to each pathovar of Xanthomonas. The uniqueness can be easily detected by the patterns resulted from Southern hybridization using the genomic digests. Thus,
we suggest the glyR gene can serve as a useful genus-specific and pathovar-specific DNA marker for Xanthomonas. One of the glyR homologs was further isolated from X. axonopodis pv. glycines, and analyzed to be functional with strong inhibitory activity against several members of Xanthomonas. 相似文献
12.
We have established a shoot regeneration system and genetic transformation of cockscomb (Celosia cristata and Celosia plumosus). The best results in terms of frequency of shoot regeneration and number of shoot buds per explant are observed on media
supplemented with 0.5 mg l−1 6-BA (for explants of apical meristems of C. cristata) or 2.0 mg l−1 6-BA, 0.5 mg l−1 NAA and 0.5 mg l−1 IAA (for hypocotyls explants of C. plumosus). We use apical meristems of C. cristata and hypocotyls of C. plumosus as the starting material for transformation. A novel KNOTTED1-like homeobox1 (KNOX), PttKN1 (Populus tremula × P. tremuoides
knotted1) isolated from the vascular cambial region of hybrid aspen, is introduced into cockscomb by Agrobacterium. A series of novel phenotypes are obtained from the transgenic cockscomb plants, including lobed or rumpled leaves, partite
leaves and two or three leaves developed on the same petiole, on the basis of their leaf phenotypes. Transformants are selected
by different concentrations of kanamycin. Transformants are confirmed by PCR of the NptII gene and PCR or RT-PCR of PttKN1 gene. Furthermore, RT-PCR shows that 35S:: PttKN1 RNA levels do not correlate with phenotypic severity. It is discussed that our results bring elements on possible function
of PttKN1 gene. To our knowledge, genetic transformation of cockscomb is first reported. 相似文献
13.
The luminous marine bacterium Photobacterium mandapamensis was synonymized several years ago with Photobacterium leiognathi based on a high degree of phenotypic and genetic similarity. To test the possibility that P. leiognathi as now formulated, however, actually contains two distinct bacterial groups reflecting the earlier identification of P. mandapamensis and P. leiognathi as separate species, we compared P. leiognathi strains isolated from light-organ symbiosis with leiognathid fishes (i.e., ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1) with strains from seawater originally described as P. mandapamensis and later synonymized as P. leiognathi (i.e., ATCC 27561T and ATCC 33981) and certain strains initially identified as P. leiognathi (i.e., PL-721, PL-741, 554). Analysis of the 16S rRNA and gyrB genes did not resolve distinct clades, affirming a close relationship among these strains. However, strains ATCC 27561T, ATCC 33981, PL-721, PL-741 and 554 were found to bear a luxF gene in the lux operon (luxABFE), whereas ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1 lack this gene (luxABE). Phylogenetic analysis of the luxAB(F)E region confirmed this distinction. Furthermore, ATCC 27561T, ATCC 33981, PL-721, PL-741 and 554 all produced a higher level of luminescence on high-salt medium, as previously described for PL-721, whereas ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1 all produced a higher level of luminescence on low-salt medium, a characteristic of P. leiognathi from leiognathid fish light organs. These results demonstrate that P. leiognathi contains two evolutionarily and phenotypically distinct clades, P. leiognathi subsp. leiognathi (strains ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1), and P. leiognathi subsp. mandapamensis (strains ATCC 27561T, ATCC 33981, PL-721, PL-741 and 554).Electronic Supplementary Material Supplementary material is available for this article at . 相似文献
14.
In the current study, we identified a key functional region in harpins from Xanthomonas that suppressed protein aggregation and mediated its expression in E. coli. Our data suggested that the presence of two common features in harpins [Wei et al. (1992) Science 257:85-88], namely, high
glycine content and lack of cysteine residues, were not sufficient for Xanthomonas to elicit hypersensitive response (HR) activity or heat stability. Additionally, bioinformatic analyses revealed that the
secondary structure of a conserved N-terminal region consisting of 12 highly hydrophilic amino acids (QGISEKQLDQLL) was α-helical.
Following site-directed mutagenesis deletion of this region, the three mutated harpin proteins, in cultures induced at 37°C,
failed to elicit a HR in tobacco leaves. However, at 24°C, two mutated harpins retained the ability to elicit HR, albeit with
lower expression levels than that noted with the wild-type. SDS-PAGE and Western blot data suggested the HpaG mutant protein
was found almost entirely in the inclusion body. These data demonstrated that these conserved amino acid residues played a
critical role in protein aggregation and inclusion body formation in harpins from Xanthomonas. 相似文献
15.
16.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae. 相似文献
17.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia. 相似文献
18.
19.
Khater L Alegria MC Borin PF Santos TM Docena C Tasic L Farah CS Ramos CH 《Archives of microbiology》2007,188(3):243-250
Genome annotation of the plant pathogen Xanthomonas axonopodis pv. citri (Xac), identified flagellar genes in a 15.7 kb gene cluster. However, FlgN, a secretion chaperone for hook-associated proteins
FlgK and FlgL, was not identified. We performed extensive screening of the X. axonopodis pv. citri genome with the yeast two-hybrid system to identify a protein with the characteristics of the flagellar chaperone FlgN. We
found a candidate (XAC1990) encoded by an operon for components of the flagellum apparatus that interacted with FlgK. In order
to further support this finding, Xac FlgK and XAC1990 were cloned, expressed, and purified. The recombinant proteins were characterized by spectroscopic methods
and their interaction in vitro confirmed by pull-down assays. We, therefore, conclude that XAC1990 and its homologs in other
Xanthomonas species are, in fact, FlgN proteins. These observations extend the sequence diversity covered by this family of proteins. 相似文献
20.
Toriba T Harada K Takamura A Nakamura H Ichikawa H Suzaki T Hirano HY 《Molecular genetics and genomics : MGG》2007,277(5):457-468
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development. 相似文献