首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HlyC is an internal protein acyltransferase that activates hemolysin, a toxic protein produced by pathogenic Escherichia coli. Acyl-acyl carrier protein (ACP) is the essential acyl donor. Separately subcloned, expressed, and purified prohemolysin A (proHlyA), HlyC, and [1-14C]myristoyl-ACP have been used to study the conversion of proHlyA to HlyA [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. HlyC and hemolysin belong to a family of at least 13 toxins produced by Gram-negative bacteria. The homologous acyltransferases of the family show a number of conserved residues that are possible candidates for participation in acyl transfer. Specific chemical reagents and site-directed mutagenesis showed that neither the single conserved cysteine nor the three conserved serine residues were required for enzyme activity. Treatment with the reversible histidine-modifying diethyl pyrocarbonate (DEPC) inhibited acyltransferase activity, and acyltransferase activity was restored following hydroxylamine treatment. The substrate myristoyl-ACP protected HlyC from DEPC inhibition. These findings and spectral absorbance changes suggested that histidine, particularly a histidine proximal to the substrate binding site, was essential for enzyme activity. Site-directed mutageneses of the single conserved histidine residue, His23, to alanine, cysteine, or serine resulted in each instance in complete inactivation of the enzyme.  相似文献   

2.
3.
HlyA is a toxin secreted by uropathogenic Escherichia coli strains. HlyA belongs to the repeats in the toxin protein family and needs (i) a posttranslational, fatty acylation at two internal lysines by the acyltransferase HlyC and (ii) extracellular ion binding to achieve its active conformation. Both processes are not fully understood and experiments are often limited due to the low amounts of protein available. Here, we present an optimized purification protocol for the proteins involved in HlyA activation as well as a quick and nonradioactive assay for in vitro HlyA acylation. These may simplify future experiments, e.g., activity scanning and characterization of HlyA or HlyC mutants as demonstrated with single and double HlyA lysine mutants.  相似文献   

4.
Internal fatty acylation of proteins is a recognized means of modifying biological behavior. Escherichia coli hemolysin A (HlyA), a toxic protein, is transcribed as a nontoxic protein and made toxic by internal acylation of two lysine residue epsilon-amino groups; HlyC catalyzes the acyl transfer from acyl-acyl carrier protein (ACP), the obligate acyl donor. Conserved residues among the respective homologous C proteins that activate 13 different RTX (repeats in toxin) toxins of which HlyA is the prototype likely include some residues that are important in catalysis. Possible roles of two conserved tyrosines and two conserved arginines were investigated by noting the effects of chemical modifiers and site-directed mutagenesis. TNM modification of HlyC at pH 8.0 led to extensive inhibition that was prevented by the presence of the substrate myristoyl-ACP but not by the product, ACPSH. NAI had no effect. Y70G and Y150G greatly diminished enzyme activity, whereas mutations Y70F and Y150F exhibited wild-type activity. Modification of arginine residues with PG markedly lowered acyltransferase activity with moderate protection by both myristoyl-ACP and ACPSH. Under optimum conditions, four separate mutations of the two conserved arginine residues (R24A, R24K, R87A, and R87K) had little effect on acyltransferase activity.  相似文献   

5.
Hemolysin, a toxic protein secreted by pathogenic Escherichia coli, is converted from nontoxic prohemolysin, proHlyA, to toxic hemolysin, HlyA, by an internal protein acyltransferase, HlyC. Acyl-acyl carrier protein (ACP) is the essential acyl donor. The acyltransferase reaction proceeds through two partial reactions and entails formation of a reactive acyl-HlyC intermediate [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1999) Biochemistry 38, 9541-9548]. The ping pong kinetic mechanism implied by these findings was validated using two different acyl-ACP substrates, thus verifying the independence of the previously demonstrated two partial reactions. Assessments of the stability of the acyl-HlyC intermediate revealed an increased stability at pH 8.6 compared to more acidic pHs. Mutations of a single conserved histidine residue essential for catalysis gave minimal activity when substituted with a tyrosine residue and no activity with a lysine residue. Unlike numerous other His23 mutants, however, the H23K enzyme showed significant acyl-HlyC formation although it was unable to transfer the acyl group from the proposed amide bond intermediate to proHlyA. These findings are compatible with transient formation of acyl-His23 during the course of HlyC catalysis. The effects of several other single site-directed mutations of conserved residues of HlyC on different portions of the reaction progress were examined using a 39 500 kDa fragment of proHlyA which was a more effective substrate than intact proHlyA.  相似文献   

6.
Hemolysin (HlyA) from Escherichia coli containing the hlyCABD operon separated from the nonhemolytic pro-HlyA upon two-dimensional (2-D) polyacrylamide gel electrophoresis. The migration distance indicated a net loss of two positive charges in HlyA as a result of the HlyC-mediated activation (modification). HlyA activated in vitro in the presence of [U-14C]palmitoyl-acyl carrier protein comigrated with in vivo-activated hemolysin on 2-D gels and was specifically labelled, in agreement with the assumption that the activation is accomplished in vitro and in vivo by covalent fatty acid acylation. The in vivo-modified amino acid residues were identified by peptide mapping and 2-D polyacrylamide gel electrophoresis of mutant and truncated HlyA derivatives, synthesized in E. coli in the presence and absence of HlyC. These analyses indicated that the internal residues Lys-564 and Lys-690 of HlyA, which have recently been shown by others to be fatty acid acylated by HlyC in vitro, are also the only modification sites in vivo. HlyA activated in E. coli was quantitatively fatty acid acylated at both sites, and the double modification was required for wild-type hemolytic activity. Single modifications in mutant and truncated HlyA derivatives suggested that both lysine residues are independently fatty acid acylated by a mechanism requiring additional sequences or structures flanking the corresponding acylation site. The intact repeat domain of HlyA was not required for the activation. The pore-forming activities of pro-HlyA and singly modified HlyA mutants in planar lipid bilayer membranes suggested that the activation is not essential for transmembrane pore formation but rather required for efficient binding of the toxin to target membranes.  相似文献   

7.
The 110 kDa haemolysin protoxin (proHlyA) is activated in the Escherichia coli cytosol by acyl carrier protein-dependent fatty acylation of two internal lysine residues, directed by the co-synthesized protein HlyC. Using an in vitro maturation reaction containing purified protoxin peptides and acylACP, we show unambiguously that HlyC possesses an apparently unique acyltransferase activity fully described by Michaelis-Menten analysis. The Vmax of HlyC at saturating levels of both substrates was approximately 115 nmol acyl group min-1 mg-1 with KMacylACP of 260 nM and KMproHlyA of 27 nM, kinetic parameters sufficient to explain why in vivo HlyC is required at a concentration equimolar to proHlyA. HlyC bound the fatty acyl group from acylACP to generate an acylated HlyC intermediate that was depleted in the presence of proHlyA, but enriched in the presence of proHlyA derivatives lacking acylation target sites. HlyC was also able to bind in vivo 4'-phosphopantetheine. Substitution of conserved amino acids that could act as putative covalent attachment sites did not prevent binding of the fatty acyl or 4'-phosphopantetheine groups. These data and substrate variation analyses suggest that the unique acylation reaction does not involve covalent attachment of fatty acid to the acyltransferase, but rather that it proceeds via a sequential ordered Bi-Bi reaction mechanism, requiring the formation of a non-covalent ternary acylACP-HlyC-proHlyA complex.  相似文献   

8.
Active and inactive forms of hemolysin (HlyA) from Escherichia coli   总被引:11,自引:0,他引:11  
The HlyA protein (Mr 110 kDa) which is the gene product of the hlyA gene encoded by the hemolysin determinant of Escherichia coli (Goebel, W. & Hedgpeth, J. (1982) J. Bacteriol. 151, 1290-1298) was observed to accumulate in the culture supernatant (in the presence of the three other Hly proteins HlyC, B and D) throughout the active growth cycle. However, the amount of extracellular HlyA protein did not correlate with the external hemolytic activity, which declined when the cells entered the stationary phase. External hemolytic activity was highly sensitive to phospholipase C and to ultrasonication. The size of the HlyA protein on SDS-PAGE was not changed by these treatments although the hemolytic activity was entirely abolished. On a polyacrylamide gel containing 2M urea but only 0.1% SDS hemolytically active HlyA migrated slightly ahead of the inactive HlyA suggesting that HlyA is more negatively charged than HlyA. Active hemolysin from unconcentrated hemolytic supernatants migrated on Sephacryl S-400 and on glycerol gradients as large complexes. Analysis of the hemolytically active fractions on SDS-PAGE yielded in both cases only HlyA (110 kDA) as major protein. An internal hemolytic activity appeared in most Escherichia coli K-12 strains in the stationary phase which was independent of the presence of HlyA or any other Hly gene product. This hemolytic activity which reached in some strains about 10% of the level determined by the hly genes was sensitive to proteinase K and disappeared upon shift of the cells to the logarithmic phase.  相似文献   

9.
Mutational analysis of the carboxy-terminal region of Escherichia coli HlyC was performed by site-directed mutagenesis. Replacement of residue Val-127 or Lys-129 reduced the activity of HlyC to about 30 or 60%, respectively, of that of the wild type, while replacement of Gly-128 reduced the activity to less than 1% of the wild-type level. Complete inactivation of HlyC was caused by a double mutation, replacement of Gly-128 with valine and of Lys-129 with isoleucine. Analysis of culture supernatants from mutants with reduced hemolytic activity by two-dimensional gel electrophoresis revealed the production and simultaneous secretion of nonacylated, monoacylated, and fully acylated HlyA forms, demonstrating impairment of the acylation reaction, possibly due to a decreased affinity of HlyC for the individual HlyA acylation sites.  相似文献   

10.
HlyC, hemolysin-activating lysine acyltransferase, catalyzes the acylation (from acyl-ACP) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, Lys564 and Lys690 of the 1024-amino acid primary structure, to form hemolysin (HlyA). The amino acid sequences flanking the two acylation sites are not homologous except that each has a glycine residue immediately preceding the lysine which is acylated; there are, however, numerous GK sequences throughout proHlyA that are not acylation sites. The substrate specificity of acylation was examined. ProHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site-directed mutation analyses of acylation sites, often served as internal protein acylation substrates, and the kinetics of the acylations were measured. The two sites of acylation of proHlyA functioned independently of one another with HlyC; there did not appear to be a common HlyC binding site or processivity of the enzyme between the sites. Acyl-HlyC was likely the enzyme form that interacted with the final acylation substrate. In a variety of constructs, the two acylation sites had similar K(m) values, but their V(max) values and catalytic efficiencies as substrates differed. Internal protein acylation was inhibited by specific small peptides mimicking the primary structure of each acylation site except that the crucial lysines were replaced with arginines; similar small peptides containing the crucial lysine, however, were not acylated.  相似文献   

11.
The hemolysin toxin (HlyA) is secreted across both the cytoplasmic and outer membranes of pathogenic Escherichia coli and forms membrane pores in cells of the host immune system, causing cell dysfunction and death. The processes underlying the interaction of HlyA with the bacterial and mammalian cell membranes are remarkable. Secretion of HlyA occurs without a periplasmic intermediate and is directed by an uncleaved C-terminal targetting signal and the HlyB and HlyD translocator proteins, the former being a member of a transporter superfamily central to import and export of a wide range of substrates by prokaryotic and eukaryotic cells. The separate process by which HlyA is targetted to mammalian cell membranes is dependent upon fatty acylation of a non-toxic precursor, proHlyA. This is achieved by a novel mechanism directed by the activator protein HlyC, which binds to an internal proHlyA recognition sequence and provides specificity for the transfer of fatty acid from cellular acyl carrier protein.  相似文献   

12.
Hemolysin, a toxic protein produced by pathogenic Escherichia coli, is one of a family of homologous toxins and toxin-processing proteins produced by Gram-negative bacteria. HlyC, an internal protein acyltransferase, converts it from nontoxic prohemolysin to toxic hemolysin. Acyl-acyl carrier protein is the essential acyl donor. The acyltransferase reaction progresses through formation of a binary complex between acyl-ACP and HlyC to a reactive acyl-HlyC intermediate [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. The homologous acyltransferases of the family have a number of conserved amino acid residues that may be catalytically important. Experiments to illuminate the reaction mechanism were done. The formation of an acyl-enzyme intermediate suggested that the reaction likely proceeded through two partial reactions. The reversibility of the first partial reaction was shown by using separately subcloned, purified, and expressed substrates and enzyme. The effects of single site-directed mutations of conserved residues of HlyC on different portions of reaction progress (binary complex formation, acyl-enzyme formation, and enzyme activity, including kinetic parameters) were determined. Mutations of His23, the only residue essential for activity, formed normal binary complexes but were unable to form acyl-HlyC. The same was seen with S20A, a mutant with greatly impaired activity. Mutation of two conserved tyrosines separately to glycines results in greatly impaired binary complex and acyl-HlyC formation, but mutation of those residues to phenylalanines restored behavior to wild-type.  相似文献   

13.
Secretion of haemolysin (HlyA) is secA independent, but depends upon two accessory membrane proteins, HlyB and HlyD, encoded by the hly determinant. A fourth (cytoplasmic) protein, HlyC, is required to activate HlyA post-translationally, but has no role in export. Deletion studies have previously shown that the HlyA molecule contains a targeting signal close to the C-terminus which specifically directs its secretion to the medium. This targeting signal has been variously located within the terminal 27, 53, 60 or 113 amino acids. In this paper, we have sought to confirm the presence of a C-terminal targeting signal and to analyse the specificity of the Hly transport system through fusion of C-terminal fragments of HlyA to heterologous polypeptides. A C-terminal fragment (23 kDa) of HlyA, when fused at the C-terminus, efficiently promoted the secretion of the eukaryotic protein prochymosin (PCM) to the medium via HlyB and HlyD. This result is in contrast to previous findings that prochymosin, preceded by the alkaline phosphatase signal sequence, cannot be translocated across the Escherichia coli inner membrane. The HlyA targeting domain was also used to secrete to the medium varying portions of chloramphenicol acetyltransferase (CAT) and 98 per cent of the beta-galactosidase (LacZ) molecule (both E. coli cytoplasmic proteins). In the case of the PCM and CAT fusions the efficiency of secretion was reduced as the proportion of the PCM and CAT molecule increased. This result is consistent with inhibition of secretion through the irreversible folding of the larger passenger protein fragments, or the occlusion of the HlyA targeting signal by upstream sequences. Analysis of the nature of the C-terminal domain promoting secretion of prochymosin, demonstrated that shortening the signal domain from 218 to 113 amino acids significantly reduced the efficiency of secretion. This result may also reflect the importance of maintaining an independently folded signal motif well separated from a passenger domain.  相似文献   

14.
The apparently unique fatty acylation mechanism that underlies activation (maturation) of Escherichia coli haemolysin and related toxins is further clarified by investigation of the interaction of protoxin with the specific acyltransferase HlyC. Using deleted protoxin variants and protoxin peptides as substrates in an in vitro maturation reaction dependent upon HlyC and acyl-acyl carrier protein, two independent HlyC recognition domains were identified on the 1024-residue protoxin, proA, and they were shown to span the two target lysine residues K564 (KI) and K690 (KII) that are fatty acylated. Each domain required 15–30 amino acids for basal recognition and 50–80 amino acids for wild-type acylation. The two domains (FAI and FAII) competed with each other in cis and in trans for HlyC. The affinity of FAI for HlyC is approximately four times greater than that of FAII resulting in an overall 80% acylation at KI and 20% acylation at KII in both whole toxin and peptide derivatives. No other proA sequences were required for toxin maturation, and excess Ca2+ prevented acylation of both lysines. The lack of primary sequence identity between FAI and FAll domains in proA and among corresponding sites on related protoxins currently precludes an explanation of the basis of HlyC recognition by proA.  相似文献   

15.
HlyC, hemolysin-activating lysine-acyltransferase, catalyses the acylation (from acyl-acyl carrier protein [ACP]) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, 564 and 690 of the 1024 amino acid primary structure, to form hemolysin (HlyA). Isothermal titration calorimetry was used to measure the thermodynamic properties of the protein acylation of proHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site directed mutation analyses of acylation sites. Acylation of proHlyA-derived proteins catalyzed by HlyC was overall an exothermic reaction driven by a negative enthalpy. The reaction, whose kinetics are compatible to a ping-pong mechanism, is composed of two partial reactions. The first, the formation of an acyl-HlyC intermediate, was entropically driven, most likely by noncovalent complex formation between acyl-ACP and HlyC; enthalpy-driven acyl transfer followed, resulting in acyl-HlyC and ACPSH product formation. The second partial reaction was an energetically unfavorable acyl transfer from acyl-enzyme intermediate to the final acyl acceptor, a proHlyA derivative. Overall the acylation of proHlyA-derived proteins catalyzed by HlyC was driven by the energetics of the acyl enzyme intermediate reaction. Of the two acylation sites, intactness of the site equivalent to proHlyA K564 was more important for acylation reaction thermodynamic stability.  相似文献   

16.
Coexpression of pairs of nonhaemolytic H1yA mutants in the recombination-deficient (recA) strain Escherichia coli HB101 resulted in a partial reconstitution of haemolytic activity, indicating that the mutation in one H1yA molecule can be complemented by the corresponding wild-type sequence in the other mutant HlyA molecule and vice versa. This suggests that two or more HlyA molecules aggregate prior to pore formation. Partial reconstitution of the haemolytic activity was obtained by the combined expression of a nonhaemolytic HlyA derivative containing a deletion of five repeat units in the repeat domain and several nonhaemolytic HlyA mutants affected in the pore-forming hydrophobic region. The simultaneous expression of two inactive mutant HlyA proteins affected in the region at which HlyA is covalently modified by HlyC and the repeat domain, respectively, resulted in a haemolytic phenotype on blood agar plates comparable to that of wild-type haemolysin. However, complementation was not possible between pairs of HlyA molecules containing site-directed mutations in the hydrophobic region and the modification region, respectively. In addition, no complementation was observed between HlyA mutants with specific mutations at different sites of the same functional domain, i.e. within the hydrophobic region, the modification region or the repeat domain. The aggregation of the HlyA molecules appears to take place after secretion, since no extracellular haemolytic activity was detected when a truncated but active HlyA lacking the C-terminal secretion sequence was expressed together with a non-haemolytic but transport-competent HlyA mutant containing a deletion in the repeat domain.  相似文献   

17.
Summary The haemolysin protein (HlyA) of Escherichia coli contains 11 tandemly repeated sequences consisting of 9 amino acids each between amino acids 739 and 849 of HlyA. We removed, by oligonucleotide-directed mutagenesis, different single repeats and combinations of several repeats. The resulting mutant proteins were perfectly stable in E. coli and were secreted with the same efficiency as the wild-type HlyA. HlyA proteins which had lost a single repeat only were still haemolytically active (in the presence of HlyC) but required elevated levels of Ca2+ for activity, as compared to the wild-type haemolysin. Removal of three or more repeats led to the complete loss of the haemolytic activity even in the presence of high Ca2+ concentrations. The mutant haemolysins were unable to compete with the wild-type haemolysin for binding to erythrocytes at low Ca2+ concentrations but could still generate ion-permeable channels in artificial lipid bilayer membranes formed of plant asolectin, even in the complete absence of Ca2+. These data indicate that the repeat domain of haemolysin is responsible for Ca2+-dependent binding of haemolysin to the erythrocyte membrane. A model for the possible functional role of Ca2+ in haemolysis is presented.  相似文献   

18.
Extra- and intracellular Escherichia coli hemolysin expressed by two cloned hly determinants, both under the control of the activator element hlyR, were analyzed. One determinant carried all four hly genes (hlyC, hlyA, hlyB, and hlyD), whereas the other carried only the two genes (hlyC and hlyA) required for synthesis of active hemolysin but not those essential for its secretion. It was shown that the total amounts of HlyA protein and of hemolytic activity are similar in both cases in logarithmically growing cultures. The E. coli strain carrying the complete hly determinant released most hemolysin into the media and accumulated very little HlyA intracellularly. The active extracellular hemolysin (HlyA*) was inactivated in the stationary phase without degradation of the HlyA protein. In contrast, the hemolysin which accumulated intracellularly in the E. coli strain carrying hlyA and hlyC only was proteolytically degraded at the end of the logarithmic growth phase. Immunogold labeling indicates that active intracellular HlyA bound preferentially to the inner membrane, whereas that part of the extracellular HlyA which remained cell-bound was located exclusively at the cell surface. It was shown by fluorescence-activated cell sorter analysis that active extra- and intracellular HlyA* bound with similar efficiency to erythrocytes, whereas hemolytically inactive HlyA protein did not bind to these target cells.  相似文献   

19.
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. Extracellular protein secretion has the advantage of reducing protein aggregation and simplifying downstream purification. The introduction of five rare codons in a specific region of the alpha-hemolysin (hlyA) gene previously was shown to result in eightfold improvement in secretion of HlyA via the hemolysin (Type-I) pathway. Here we investigate the biological basis for the observed phenomenon that translation rate of HlyA protein may be related to the ability to secrete higher levels of HlyA via the Type-I pathway. A detailed comparative analysis between a hypersecreter mutant strain (hly-slow) and a control strain (hly-parent) shows a significant decrease (by approximately 50%) in the intracellular level of HlyA protein in the hly-slow strain relative to the hly-parent strain. Nearly 100% of the intracellular HlyA protein exists in the inclusion body fraction in both the strains. These results demonstrate the importance of synonymous codon changes in the context of improving HlyA secretion yield via Type-I pathway and further illustrate that production of high levels of secreted proteins appears to require a balance between translation and secretion rate.  相似文献   

20.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号