首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C1 inhibitor (C1INH), the major plasma inhibitor of activated C1, kallikrein, and activated Hageman factor, may be an important factor in limiting inflammatory injury mediated by the complement and contact systems. C1INH is thought to be synthesized primarily in the liver; however, the regulators of hepatic C1 inhibitor synthesis are completely unknown. In this report, we analyze the regulation of C1INH synthesis by hepatocyte stimulating factors in human hepatoma cell lines and primary hepatocytes. Interleukin-6 and interferon gamma increase C1INH production in both hepatoma cells and hepatocytes. These cytokines stimulate de novo synthesis of functional C1INH, acting at a pretranslational level as assessed by Northern blotting. The stimulatory effects of interleukin-6 and interferon gamma on C1INH synthesis are separate and are differentially modulated by interleukin-1. These results establish that hepatic C1INH synthesis is regulated by hepatocyte stimulating factors and reveal novel interactions between these factors.  相似文献   

2.
C1 inhibitor (C1INH), a complement regulatory protein, prevents endotoxin shock via a direct interaction of the amino-terminal domain with gram-negative bacterial lipopolysaccharide (LPS). Importantly, the cleaved, inactive C1INH still is an anti-endotoxin effector indicating the anti-endotoxin peptide that generates from the amino-terminal domain of C1INH. In this study, we first identified that a cleaved fragment within the major part of the amino-terminal domain in in vitro proteolytic analysis of C1INH had an ability to bind to LPS. We synthesized several peptides overlapping the C1INH cleaved fragment. Among these synthetic peptides, a 13-mer derivative peptide at position from 18 to 30, named N2((18-30)), exhibited the most powerful anti-endotoxin activity in vitro, enlightening that it was most strong at binding to LPS, inhibiting the interaction of LPS with LPS-binding protein (LBP), blocking LPS binding to CD14(+) cells, and suppressing production of tumor necrosis factor (TNF)-alpha by murine macrophages, RAW 264.7. In the murine endotoxin shock model, the peptide N2((18-30)) protected mice from LPS-induced lethal septic shock by inhibiting macrophage activation. These data indicate that the peptide N2((18-30)) derived from the amino-terminal region of C1INH is anti-endotoxin.  相似文献   

3.
Protozoa of the genus Leishmania infect reticuloendothelial cells of several mammalian species, including dogs, in which they often give rise to a chronic, not self-healing visceral disease. The parasitocidal mechanism of peripheral blood monocytes towards Leishmania in the dog has not been investigated in detail. Consequently, Leishmania infantum-infected monocyte cultures of healthy dogs were evaluated using the following parameters: (1) phagocytosis and killing capacities; (2) oxidative burst, in terms of superoxide anion (O2-) release, and (3) nitric oxide (NO) activity, in terms of nitrite (NO2-) production in the presence or absence of the NO synthase inhibitor NG-monomethyl-L-arginine (NGMMLA). Parallel experiments were performed on monocytes stimulated with supernatants of concanavalin A-activated PBMC and on unstimulated monocytes. The amount of IFN-gamma in PBMC supernatants used for monocyte activation was determined by a biological assay on a canine Madin Darby cell line. Results demonstrated that phagocytosis, killing capacity and O2- production significantly increased in monocytes stimulated with supernatants, in comparison with unstimulated cells. A positive correlation was observed between the killing capacity, the O2- production and the amount of IFN-gamma in PBMC supernatants employed for monocyte activation. No significant differences were observed in NO production between unstimulated and stimulated cultures, or between the same cultures with and without NGMMLA. Finally, the killing percentage was similar in the presence or absence of NGMMLA, suggesting that in this experimental model peripheral blood dog monocytes lack NO-mediated killing.  相似文献   

4.
Monocyte complement stimulator (MCS), a product of T lymphocytes, is defined by its ability to stimulate the synthesis and secretion of the second complement component (C2) by monocytes. Most macrophage-activating factor (MAF) activity present in lymphokine-rich culture supernatants has recently been found to be due to interferon-gamma (IFN-gamma). We therefore hypothesized that IFN-gamma may have MCS activity as well. We tested recombinant, E. coli-derived, human IFN-gamma (rIFN-gamma) for its effects on C2 production by adherent peripheral blood monocytes and U937 cells, a human monocytic cell line. Recombinant IFN-gamma in concentrations ranging from 0.1 to 300 U/ml (0.003 to 8.8 ng/ml) stimulates C2 production by both cell populations. Exposure of responding cells for at least 24 hr is required for maximal stimulation. To determine the contribution of IFN-gamma toward total MCS activity in crude lymphokine-rich supernatants, we employed a solid-phase immunoabsorption technique with the use of a monoclonal anti-IFN-gamma antibody. This technique removed all IFN-gamma detectable by a sensitive ELISA, but MCS activity was decreased by only 40 to 50%. Additionally, MCS activity of these supernatants did not correlate with IFN-gamma content as determined by ELISA. By using another method to eliminate IFN-gamma activity, acid dialysis destroyed all rIFN-gamma activity, as measured by stimulation of U937 C2 synthesis, but eliminated only 30 to 67% of MCS activity from crude lymphokine preparations. Thus IFN-gamma stimulates C2 production by monocytes and U937 cells and apparently accounts for some, but not all, MCS activity present in lymphokine-rich supernatants. Other lymphokines are present in such supernatants that also possess this activity.  相似文献   

5.
Interferons-alpha, -beta and -gamma (IFNs-alpha, -beta and -gamma) stimulated the synthesis of the second complement component (C2), Factor B (B) and C1 inhibitor (C1-inh) by human monocytes in vitro. The degree of increase of the secretion rates of C2, B and C1-inh was dose-dependent and proportional to increases in the abundances of their respective mRNAs. IFN-gamma was the most effective at stimulating monocyte C1-inh synthesis, whereas IFN-alpha and IFN-beta were marginally more effective at stimulating monocyte C2 and B synthesis. Kinetic studies showed that the effect of the IFNs was rapid, with maximum stimulation occurring within 1-2 h for all three proteins. After the removal of IFNs from cultures the C1-inh mRNA abundance remained elevated for over 24 h in IFN-gamma-treated monocytes but returned to control levels within 8 h in IFN-alpha-treated and IFN-beta-treated monocytes. The abundances of C2 mRNA and B mRNA also returned to basal values within 8 h after removal of any of the three cytokines from the cultures. Both IFN-alpha and IFN-beta acted synergistically with IFN-gamma to stimulate synthesis of C1-inh and B. This synergistic effect only occurred when the cytokines were present in the cultures simultaneously. The effects of IFN-gamma plus IFN-alpha or IFN-beta on C2 synthesis appeared to be additive rather than synergistic. IFN-gamma inhibited synthesis of C3 by monocytes, but IFN-alpha and IFN-beta had no effect on the synthesis of this protein. Furthermore, none of the three cytokines had any effect on the expression of actin mRNA in monocytes.  相似文献   

6.
J Le  J Vilcek 《Cellular immunology》1984,85(1):278-283
Purified natural and recombinant human immune interferon (IFN-gamma) were found to activate human monocytes from peripheral blood to exert enhanced cytotoxicity against human colon adenocarcinoma HT-29 cells. A marked monocyte activation was observed at low concentrations (1 and 10 U/ml) of IFN-gamma. Marked monocyte activation was also obtained with two lymphokine preparations, produced in peripheral blood mononuclear cell (PBM) cultures induced with phytohemagglutinin (PHA) or by combined stimulation with PHA and 12-O-tetradecanoylphorbol 13-acetate (TPA). The component responsible for macrophage activation in such lymphokine preparations in the past was considered to be "macrophage-activating factor" (MAF). When monoclonal antibody specifically neutralizing IFN-gamma was added to these lymphokine preparations, all MAF activity disappeared, indicating that IFN-gamma is the sole protein showing MAF activity in these preparations.  相似文献   

7.
Both native human IFN-beta or -gamma added to human monocytes in culture increased their leishmaniacidal effect on intracellular Leishmania tropica major (L. major) amastigotes. This effect was dose-dependent, and was apparent if the IFN was added either before or after infection of the monocyte cultures with the promastigote form of the parasite. Compared on the basis of antiviral activity, IFN-gamma was shown to have a leishmaniacidal effect approximately three times greater than IFN-beta. Recombinant IFN preparations showed similar effects. In addition, IFN-gamma increased H2O2 production from human monocytes in culture in a dose-dependent manner. Monoclonal antibody to IFN-gamma abrogated both its effect on the leishmaniacidal capacity and on H2O2 production by the monocytes. These results suggest that IFN-gamma may be of therapeutic value in cutaneous leishmaniasis.  相似文献   

8.
Freshly isolated human peripheral blood monocytes from healthy volunteers were not cytotoxic to allogeneic A375 melanoma cells, but they were activated to the cytotoxic state by incubation in vitro with either des-methyl muramyl dipeptide (norMDP; minimal effective dose, 0.5 micrograms/ml) or recombinant human interferon-gamma (rIFN-gamma; minimal effective dose, 1 U/ml). A combination of subthreshold concentrations of these agents (norMDP, 0.5 micrograms/ml; rIFN-gamma, 10 U/ml) also induced significant cytotoxicity, indicating that the effects of norMDP and rIFN-gamma in monocyte activation are synergistic. Natural human IFN-gamma (nIFN-gamma) and norMDP also had similar synergistic effects. Pretreatment of rIFN-gamma with anti-IFN-gamma antibody completely inhibited its synergistic effect with norMDP in monocyte activation. Because pretreatment of rIFN-gamma and norMDP with polymyxin B did not interfere with their effects in monocyte activation, the preparations were not contaminated with lipopolysaccharide. Moreover, because pretreatment of monocyte monolayers with anti-Leu-11b antibody (anti-natural killer (NK) cell antibody) and complement did not interfere with the synergistic effects of norMDP and rIFN-gamma, whereas pretreatment with anti-Leu-M1 antibody (anti-monocyte antibody) caused complete inhibition of their effects, the observed tumor cytotoxicity of monocyte-rich monolayers was probably not due to a small number of adherent NK cells, but to the stimulation of the monocytes. Natural and recombinant IFN-alpha and IFN-beta at concentrations of greater than or equal to 100 U/ml also induced tumoricidal activity of monocytes, but unlike IFN-gamma, their effects were additive with norMDP, and they had less priming effect than IFN-gamma when they were added before norMDP to monocytes. These findings suggest that recombinant human IFN-gamma has much more synergistic potential with norMDP than IFN-alpha or IFN-beta, and this synergism of rIFN-gamma and norMDP for monocyte activation could be of clinical value in treatment of disseminated malignant diseases, because these compounds are readily available at standardized concentrations.  相似文献   

9.
The T cell signals that regulate the induction of human monocyte IL-1 during primary immune activation were investigated by using anti-CD3 mitogenesis. The induction of monocyte IL-1 alpha and beta mRNA during anti-CD3 mitogenesis was rapid (less than or equal to 1 h) and required the presence of both T cells and anti-CD3. The addition of T cells plus a nonmitogenic anti-CD5 antibody failed to induce IL-1 alpha or beta mRNA, indicating that IL-1 mRNA induction by anti-CD3 required T cell activation. Experiments using double chamber culture wells revealed that the major initial phase of IL-1 alpha and beta mRNA induction (1 to 12 h) required direct cell contact between monocytes and T cells. A subsequent minor late phase (greater than or equal to 12 h) of IL-1 mRNA was induced independently of cell contact in monocytes that received only soluble factors generated during anti-CD3 mitogenesis and was temporally associated with the appearance in culture supernatants of the late phase IL-1-inducing cytokines, IL-2, IFN-gamma, and TNF-alpha. Metabolic inactivation of T cells using paraformaldehyde demonstrated that the ability of T cells to induce IL-1 mRNA via cell contact was acquired only after activation of T cells via solid phase anti-CD3. Furthermore, pretreatment of T cells with the protein synthesis inhibitor emetine had no effect on T cell-mediated induction of monocyte IL-1 mRNA or cell-associated IL-1 alpha and beta, indicating that the expression of the IL-1 inductive signal did not require protein synthesis. Despite their ability to induce monocyte IL-1 alpha and beta mRNA, activated T cells treated with paraformaldehyde or emetine were no longer able to induce monocytes to secrete IL-1 beta into culture supernatants. However, supernatants from purified T cells that were activated with solid-phase anti-CD3 restored the ability of paraformaldehyde or emetine-treated T cells to induce IL-1 secretion. These studies provide evidence that supports a two-signal model of monocyte IL-1 production during primary immune activation. The first signal leads to the induction of monocyte IL-1 mRNA and is mediated by direct contact with activated T cells, and the second signal is provided by soluble T cell factors and results in IL-1 secretion.  相似文献   

10.
Monocytes accumulate in the epidermis and along the dermo-epidermal junction in several different inflammatory skin diseases. To determine whether human epidermal keratinocytes elaborate a specific chemotaxin responsible for the accumulation of monocytes at these anatomic sites, monocyte chemotactic activity in conditioned 16-h cultured keratinocyte supernatants were assayed using human peripheral blood monocytes as the target cell. Dilutional analysis revealed directed monocyte migration in IFN-gamma-treated (100 U/ml) keratinocyte supernatants (80% maximal FMLP response) which was 10-fold more than IFN-gamma itself or untreated keratinocyte activity alone. Gel filtration chromatography revealed that this activity eluted just ahead of a 12.5-kDa molecular mass marker. Blocking studies demonstrated that a rabbit polyclonal antibody to monocyte chemotaxis and activating factor (MCAF) inhibited all monocyte chemotaxis by greater than 80%. Keratinocytes were metabolically labeled with 35S-cysteine/methionine, and after 16 h incubation the supernatants immunoprecipitated with the same anti-MCAF antibody. MCAF was detected as a protein doublet of 12 and 9 kDa only in IFN-gamma-treated (100 U/ml) keratinocyte supernatants. Incubation with IFN-gamma and TNF-alpha (250 U/ml) in combination resulted in increased production of MCAF protein. By Northern blot analysis, MCAF mRNA was constitutively expressed in keratinocytes and upregulated only in the presence of IFN-gamma. TNF-alpha, IL-1 beta, transforming growth factor-beta and phorbol esters had no positive or negative influence on MCAF mRNA. These studies demonstrate that biologically active MCAF is elaborated by human epidermal keratinocytes upon activation by IFN-gamma, a cytokine also required for the induction of adherence between monocytes and keratinocytes. Keratinocyte-derived MCAF is likely to be important in the regulation of cutaneous monocyte trafficking and may also be responsible for the recruitment of Langerhans cells and dermal dendrocytes, which share many phenotypic features with monocytes/macrophages, to their anatomic locations in skin.  相似文献   

11.
The induction of polyclonal immunoglobulin (Ig) synthesis by glucocorticosteroids (GCS) in human peripheral blood lymphocytes is dependent on both T cells and monocytes. T cells can be replaced by a cytokine, T cell replacing factor for steroids (TRF-S), which promotes GCS-induced Ig production. T cells produce the cytokine when cultured with intact monocytes, with 24 hr monocyte supernatants, or with small quantities (0.1 U/ml or more) of highly purified interleukin 1 (IL 1). TRF-S was produced by isolated T4+ cells, whereas isolated T8+ cells were unable to help GCS-induced Ig synthesis. High pressure liquid chromatography with a gel permeation column revealed a single locus of activity that corresponded to an apparent m.w. of 40,000. At the dilutions utilized in culture, supernatants containing optimal TRF-S activity (3 U/ml final concentration in culture) were found to have less than 0.2 U/ml (final concentration) of interleukin 2 (IL 2) activity. Neither recombinant IL 2 nor recombinant interferon-gamma (IFN-gamma) over a broad range of concentrations was able to reproduce the capacity of TRF-S to induce the development of Ig-secreting cells with GCS. Thus, we report that TRF-S is synthesized primarily by T4+ T cells, and that its production is stimulated by small concentrations of IL 1. The apparent m.w. of TRF-S is 40,000, and its biological activity is distinct from that of IL 1, IL 2, and IFN-gamma.  相似文献   

12.
Complement activation and neutrophil stimulation are two major components in events leading to ischemia and reperfusion (IR) injury. C1 inhibitor (C1INH) inhibits activation of each of the three pathways of complement activation and of the contact system. It is also endowed with anti-inflammatory properties that are independent of protease inhibition. The goal of these studies was to investigate the role and mechanism of C1INH in alleviating IR-induced intestinal injury. C57BL/6, C1INH-deficient (C1INH(-/-)), bradykinin type 2 receptor-deficient (Bk2R(-/-)), and C3-deficient mice (C3(-/-)) were randomized into three groups: sham operated control, IR, and IR + C1INH-treated groups. Ischemia was generated by occlusion of the superior mesenteric artery followed by reperfusion. C1INH or reactive center-cleaved inactive C1INH (iC1INH) was injected intravenously before reperfusion. IR resulted in intestinal injury in C57BL/6, C1INH(-/-), Bk2R(-/-), and C3(-/-) mice with significantly increased neutrophil infiltration into intestinal tissue. In each mouse strain, C1INH treatment reduced intestinal tissue injury and attenuated leukocyte infiltration compared with the untreated IR group. C1INH inhibited leukocyte rolling in the mesenteric veins of both C57BL/6 and C3-deficient mice subjected to IR. C1INH treatment also improved the survival rate of C57BL/6 and C1INH(-/-) mice following IR. Similar findings were observed in the IR animals treated with iC1INH. These studies emphasize the therapeutic benefit of C1INH in preventing intestinal injury caused by IR. In addition to the protective activities mediated via inhibition of the complement system, these studies indicate that C1INH also plays a direct role in suppression of leukocyte transmigration into reperfused tissue.  相似文献   

13.
C1 inhibitor-mediated protection from sepsis   总被引:2,自引:0,他引:2  
C1 inhibitor (C1INH) protects mice from lethal Gram-negative bacterial LPS-induced endotoxin shock and blocks the binding of LPS to the murine macrophage cell line, RAW 264.7, via an interaction with lipid A. Using the cecal ligation and puncture (CLP) model for sepsis in mice, treatment with C1INH improved survival in comparison with untreated controls. The effect was not solely the result of inhibition of complement and contact system activation because reactive center-cleaved, inactive C1INH (iC1INH) also was effective. In vivo, C1INH and iC1INH both reduced the number of viable bacteria in the blood and peritoneal fluid and accelerated killing of bacteria by blood neutrophils and peritoneal macrophages. In vitro, C1INH bound to bacteria cultured from blood or peritoneal fluid of mice with CLP-induced sepsis, but had no direct effect on bacterial growth. However, both C1INH and iC1INH enhanced the bactericidal activity of blood neutrophils and peritoneal exudate leukocytes. C1INH-deficient mice (C1INH-/- mice) subjected to CLP had a higher mortality than did wild-type littermate mice. Survival of C1INH-/- mice was significantly increased with two doses of C1INH, one given immediately following CLP, and the second at 6 h post-CLP. C1INH may be important in protection from sepsis through enhancement of bacterial uptake by, and/or bactericidal capacity of, phagocytes. Treatment with C1INH may provide a useful additional therapeutic approach in some patients with peritonitis and/or sepsis.  相似文献   

14.
15.
Decay-accelerating factor (DAF) is a glycosylphosphatidylinositol-anchored membrane protein that protects cells from damage by autologous complement activation. Of the four mAb against DAF prepared in our laboratory, 1C6 completely blocked DAF function, whereas 5B2 partially blocked it. Using these mAb, we investigated whether human monocytes were activated via DAF molecules. When monocytes were incubated with 1C6 alone, glucose was consumed in significant amounts and phagocytosis of latex beads was enhanced, indicating that the monocytes had been activated. However, 1C6 did not enhance the production of monokines, TNF-alpha, and IL-1 alpha and -beta. The F(ab')2 fragment of 1C6 also activated monocytes, whereas 5B2 and the Fab fragment of 1C6 could not. To further examine monocyte activation, these cells were treated with phosphatidylinositol-specific phospholipase C. Increased glucose consumption and enhanced phagocytic activity by 1C6 were considerably reduced in monocytes treated with phosphatidylinositol-specific phospholipase C. In addition, we found that 1C6 stimulated the generation of inositol trisphosphate. These results demonstrate that the signal transmitted via the DAF molecule is capable of stimulating monocytes.  相似文献   

16.
17.
The effect of IL-3, granulocyte-macrophage (GM)-CSF and macrophage (M)-CSF on Candida albicans growth inhibition by human peripheral blood monocytes was investigated. By using a radiolabel microassay developed in our laboratory that makes use of the incorporation of [3H]glucose into residual C. albicans, we demonstrated that rGM-CSF and rIL-3 effectively enhanced human monocyte-mediated anticandidal activity. Incubation for 24 h with either GM-CSF or IL-3 significantly enhanced monocyte antifungal responses down to 0.01 U/ml. M-CSF, at higher concentrations of 10 U/ml, could also enhance monocyte function but to a smaller degree. None of the CSF interfered directly with fungal growth, even up to 1000 U/ml. Because IFN-gamma is also a known monocyte activator, its effect on monocytes was also assessed. Monocytes were first cultured in medium for several days and then further incubated with each of the cytokines. Monocytes aged in medium were found to lose their spontaneous anticandidal activity. Such aged monocytes did not develop anticandidal activity in response to IFN-gamma but did in response to GM-CSF or IL-3. To further elucidate this difference, fresh monocytes were continuously cultured with or without cytokines for 1 to 5 days before assessing their anticandidal activity. Monocytes cultured in IFN-gamma progressively lost their activity by 2 days but monocytes in GM-CSF or IL-3 maintained their high level of anticandidal activity throughout the whole length of culture. Therefore, GM-CSF and IL-3 not only enhanced fresh monocyte anticandidal activity, but maintained monocyte function for a longer period. These results suggest that GM-CSF and IL-3 may act on monocytes via a different pathway than does IFN-gamma.  相似文献   

18.
Monocyte chemotactic protein (MCP-1) is a specific monocyte chemoattractant and activating factor produced by both immune cells (mononuclear phagocytes and lymphocytes) and non-immune cells (parenchymal and stromal cells). In order to define the conditions under which human monocytes express MCP-1, monocytes were exposed to IFN-gamma, IL- lbeta, TNF-alpha, IL-4 or PHA under serum free conditions. There was no significant MCP-1 production by monocytes following exposure to IL-lbeta, TNF-alpha or IL-4. In contrast, stimulation with IFN-gamma resulted in a dose dependent increase in MCP-1 protein and mRNA expression. Simultaneous stimulation with IFN-gamma and IL-1beta or TNF-alpha resulted in no further increase in MCP-1 production. It is concluded that IFN-gamma, primarily a product of T(H)1 T lymphocytes, stimulates the expression of MCP-1 by monocytes.  相似文献   

19.
We compared the regulation of C3 and factor B synthesis in cord blood and adult monocytes by using techniques for identification and quantification of newly synthesized proteins, lipopolysaccharide (LPS) from several Gram-negative organisms, and precursors of LPS. Synthesis of C3 and factor B in cord blood monocytes was unaffected by lipid A (the active moiety of LPS extracted by the Westphal procedure). In contrast, adult monocytes increased C3 synthesis by 11.5-fold and factor B synthesis by 3.1-fold in response to LPS. This difference in cord blood monocyte response to LPS was specific in that other LPS-induced monocyte functions (superoxide production and phagocytosis) were stimulated comparably in both cord blood and adult monocytes by LPS. To characterize further this regulatory difference, the roles of LPS precursors, arachidonic acid metabolites, and of factor(s) released by adult monocytes were examined. Precursors of the lipid portion of LPS (lipid X and lipid Y), LPS isolated by trichloroacetic acid extraction, and endotoxin-associated protein (EAP) increased C3 and factor B synthesis in cord blood monocytes. Inhibitors of the lipoxygenase pathway (dexamethasone, ETYA) but not of the cyclooxygenase pathway (indomethacin) abrogated the response of adult monocytes to lipid A and EAP and of cord blood monocytes to EAP. Finally, co-incubation of adult monocytes and cord blood monocytes in LPS-containing medium resulted in enhancement of C3 and factor B synthesis in cord blood monocytes. These data suggest that the difference in LPS response between cord blood and adult monocytes may result from differences in lipid processing or protein recognition of LPS, differences in the production of lipoxygenase pathway products, and/or one or more regulatory factors. The availability of human mononuclear phagocytes which exhibit distinct differences in biosynthetic responsiveness to LPS should permit investigation of the molecular mechanism(s) by which LPS affects C3 and factor B gene expression.  相似文献   

20.
Synthesis and regulation of C1 inhibitor in human skin fibroblasts   总被引:4,自引:0,他引:4  
Proteins of the C1 complex, C1q, C1r, and C1s, of the classical pathway of complement activation are known to be synthesized in human skin fibroblasts. Using metabolic labeling with [35S]methionine, immunoprecipitation, and SDS-PAGE, we demonstrate that human skin fibroblasts synthesize and secrete C1 inhibitor with an apparent molecular mass of 78 kDa in the cell lysate and 102 kDa in the extracellular medium. This C1 inhibitor had the capacity to bind activated C1s. Fibroblasts synthesized 30- to 50-fold more C1 inhibitor than was synthesized in monocytes. As previously reported, fibroblasts also synthesized C1r and C1s. IFN-gamma, IFN-beta 1, and TNF had significant, but distinct, effects on synthesis of C1 inhibitor, C1r, and C1s. Incubation of the cells with IFN-gamma, 1000 U/ml, for 24 h induced increases in the synthesis of C1 inhibitor, C1r, and C1s by 4.2-, 1.9- and 1.6-fold, respectively. IFN-beta 1 had effects similar to IFN-gamma, although smaller in magnitude. TNF, 12.5 ng/ml, induced increases in the synthesis of C1 inhibitor, C1r, and C1s by 1.5-, 1.4- and 2.6-fold. IL-1, IFN-beta 2 (IL-6), and LPS did not affect synthesis of C1 inhibitor, C1r, or C1s. Fibroblasts are present in large amounts in most tissues. Synthesis of C1 inhibitor, C1r, and C1s by these cells could provide a source of these important proteins in body tissues. In addition, fibroblasts should be a good model for the in vitro study of genetic diseases involving the synthesis of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号