首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visna virus synthesized in absence of host-cell division and DNA synthesis   总被引:2,自引:0,他引:2  
Visna virus is similar to the avian and the murine oncornaviruses. Oncornavirus replication is dependent upon the provirus being integrated into the host cell's DNA but integration and subsequent oncornavirus synthesis is blocked when the host cells are prevented from synthesizing cellular DNA or dividing. The synthesis of visna virus is restricted in vivo and may be dependent upon the host cell's ability to synthesize cellular DNA or divide. Treatment of sheep choroid plexus (SCP) cells with ultraviolet light or with mitomycin C prior to infection irreversibly inhibited plexus (ScP) cells with ultraviolet light or with mitomycin C prior to infection irreversibly inhibited both cell division and cellular nucleic acid synthesis but did not inhibit visna virus synthesis. Similarly, the synthesis of visna virus in cultures of SCP cells which had been prevented from dividing by being deprived of serum and in cultures of SCP cells which were incapable of synthesizing host cell nucleic acids by being treated with miracil D or sodium hexachloroiridate was equivalent to the synthesis of visna virus in cultures of SCP cells which were allowed to both synthesize cellular nucleic acids and divide. The synthesis of visna virus in the presence of ethidium bromide further demonstrated that integration of the visna provirus into the host cell's DNA is not required for visna virus synthesis to occur.  相似文献   

2.
The effect DNA repair might have on the integration of exogenous proviral DNA into host cell DNA was investigated by comparing the efficiency of proviral DNA integration in normal chicken embryonic fibroblasts and in chicken embryonic fibroblasts treated with UV or 4-nitroquinoline-1-oxide. The cells were treated with UV or 4-nitroquinoline-1-oxide at various time intervals ranging from 6 h before to 24 h after infection with Schmidt-Ruppin strain A of Rous sarcoma virus. The chicken embryonic fibroblasts were subsequently cultured for 18 to 21 days to ensure maximal integration and elimination of nonintegrated exogenous proviral DNA before DNA was extracted. Integration of proviral DNA into the cellular genome was quantitated by hybridization of denatured cellular DNA on filters with an excess of (3)H-labeled 35S viral RNA. The copy number of the integrated proviruses in normal cells and in infected cells was also determined from the kinetics of liquid RNA-DNA hybridization in DNA excess. Both RNA excess and DNA excess methods of hybridization indicate that two to three copies of the endogenous provirus appear to be present per haploid normal chicken cell genome and that two to three copies of the provirus of Schmidt-Ruppin strain A of Rous sarcoma virus become integrated per haploid cell genome after infection. The copy number of viral genome equivalents integrated per cell treated with UV or 4-nitroquinoline-1-oxide at different time intervals before or after infection did not differ from the copy number in untreated but infected cells. This finding supports our previous report that the integration of oncornavirus proviral DNA is restricted to specific sites in the host cell DNA and suggests a specific mechanism for integration.  相似文献   

3.
M de Mars  P E Cizdziel    E C Murphy  Jr 《Journal of virology》1990,64(11):5260-5269
We have examined splice site activation in relation to intron structure in murine sarcoma virus (MuSV)-124 RNA. MuSV-124 contains inactive murine leukemia virus env gene splice sites (termed 5' env and 3' env) as well as cryptic sites in the gag and v-mos genes (termed 5' gag and 3' mos) which are activated for thermosensitive splicing by a 1,487-base intronic deletion in the MuSV-124 derived MuSVts110 retrovirus. To determine conditions permissive for splice site activation, we examined MuSV-124 mutants deleted in the 1,919-base intron bounded by the 5' gag and 3' mos sites. Several of these deletions activated thermosensitive splicing either at the same sites used in MuSVts110 or in a previously unreported temperature-sensitive splice event between the 5' gag and 3' env sites. These data suggested that the thermosensitive splicing phenotype characteristic of MuSVts110 required neither a specialized intron nor selection of a particular 3' splice site. The 3' env and 3' mos sites were found to compete for splicing to the 5' gag site; the more upstream 3' env site was exclusively used in MuSV-124 mutants containing both sites, whereas selection of the 3' mos site required removal of the 3' env site. Branchpoint sequences were found to have a potential regulatory role in thermosensitive splicing. Insertion of a beta-globin branchpoint sequence in a splicing-inactive MuSV-124 mutant activated efficient nonthermosensitive splicing at the 3' mos site, whereas a mutated branchpoint activated less efficient but thermosensitive splicing.  相似文献   

4.
Stocks of hybrid lambda phages carrying the complete integrated provirus of either m1 or HT1 Moloney murine sarcoma virus, as well as flanking host sequences, frequently contain significant numbers of phages carrying a specific deletion. This deletion arises from a recombination event between the terminally repeated sequences in the provirus that deletes the unique Moloney murine sarcoma virus sequences bracketed by the terminally repeated sequences. Physical mapping has shown that the deletion phage retains one complete copy of the terminally repeated sequence and the flanking mink host sequences. One such deletion, lambdaHT1r+, was used to characterize a mink genomic DNA sequence that contains an HT1 Moloney murine sarcoma virus integration site. This integration site sequence from normal mink cells was also cloned into phage lambda. An analysis of the heteroduplexes between the integration site and the lambdaHT1r+ deletion indicated that no major rearrangement of host sequences occurred upon integration of the Moloney murine sarcoma provirus.  相似文献   

5.
6.
The effect of interferon (IFN) on the cytoplasmic synthesis of murine sarcoma virus DNA, its transport to the host nucleus, and its integration into the cellular genome were investigated. For this purpose, at various intervals after infection. DNA was extracted from the cytoplasmic fraction, nuclear Hirt supernatant, and chromosomal DNA pellet. The relative amount of viral DNA was estimated by C0t kinetics analysis of hybridization to murine sarcoma virus-specific [3H]cDNA. IFN was found to delay viral DNA synthesis by about 2.5 h, but the amount of viral DNA eventually formed in IFN-treated cells was comparable to that of the control. The transport of this DNA to the nucleus was delayed by IFN for 6 to 18 h, but once again, all the cytoplasmic viral DNA formed in IFN-treated cells was eventually transferred to their nucleus. However, although the main part of the viral DNA formed in control cells was finally integrated into the host genome, no significant integration was observed in IFN-treated cells. Alkaline sucrose gradient analysis revealed that IFN inhibited the accumulation of supercoiled viral DNA in the nucleus. Since supercoiled viral DNA is considered a precursor to integrated provirus, this observation may suggest that IFN inhibits viral DNA integration by blocking its supercoiling.  相似文献   

7.
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a new human retrovirus associated with prostate cancer and chronic fatigue syndrome. The causal relationship of XMRV infection to human disease and the mechanism of pathogenicity have not been established. During retrovirus replication, integration of the cDNA copy of the viral RNA genome into the host cell chromosome is an essential step and involves coordinated joining of the two ends of the linear viral DNA into staggered sites on target DNA. Correct integration produces proviruses that are flanked by a short direct repeat, which varies from 4 to 6 bp among the retroviruses but is invariant for each particular retrovirus. Uncoordinated joining of the two viral DNA ends into target DNA can cause insertions, deletions, or other genomic alterations at the integration site. To determine the fidelity of XMRV integration, cells infected with XMRV were clonally expanded and DNA sequences at the viral-host DNA junctions were determined and analyzed. We found that a majority of the provirus ends were correctly processed and flanked by a 4-bp direct repeat of host DNA. A weak consensus sequence was also detected at the XMRV integration sites. We conclude that integration of XMRV DNA involves a coordinated joining of two viral DNA ends that are spaced 4 bp apart on the target DNA and proceeds with high fidelity.  相似文献   

8.
Siva AC  Bushman F 《Journal of virology》2002,76(23):11904-11910
The DNA-breaking and -joining steps initiating retroviral integration are well understood, but the later steps, thought to be carried out by cellular DNA repair enzymes, have not been fully characterized. Poly(ADP-ribose) polymerase 1 (PARP-1) has been proposed to play a role late during retroviral integration, because infection by human immunodeficiency virus (HIV)-based vectors was reported to be strongly inhibited in PARP-1-deficient fibroblasts. PARP-1, a nuclear enzyme, binds tightly to nicked DNA and synthesizes poly(ADP-ribose) as an early response to DNA damage. To investigate the role of PARP-1 in retroviral integration, we infected wild-type and PARP-1-deficient mouse embryonic fibroblasts (MEFs) separately with two HIV type 1-derived, vesicular stomatitis virus G-pseudotyped lentivirus vectors. Surprisingly, infection of both wild-type and PARP-1-deficient cells was observed with both vectors. Marker gene transduction and provirus formation by one vector was reduced by 45 to 75% compared to the wild type, but the other vector was unaffected by the PARP-1 mutant. In addition, PARP-1-deficient MEFs infected with Moloney murine leukemia virus showed no decrease in virus output after infection compared to the wild type. We conclude that PARP-1 cannot be strictly required for retroviral infection because replication steps, including integration, can proceed efficiently in its absence.  相似文献   

9.
The fate of input Friend leukemia virus RNA was studied using labeled input virus. The appearance of nuclear RNA-DNA hybrid molecules and the apparent integration of input virion RNA with host cell DNA was studied using a series of inhibitors of DNA or protein synthesis, cell growth conditions, and an intercalating agent. Under all these conditions of infection, little to no viral-specific RNA-DNA hybrid molecules were formed. These data demonstrate that the formation of such RNA-DNA hybrid structures requires conditions of infection that allow provirus synthesis and integration. Furthermore, they suggest that at least a fraction of input virion RNA may transiently become integrated with host cell DNA.  相似文献   

10.
Highly preferred targets for retrovirus integration   总被引:59,自引:0,他引:59  
C C Shih  J P Stoye  J M Coffin 《Cell》1988,53(4):531-537
A central feature of retrovirus replication is integration of the provirus into host cell DNA, but the specificity of this step for cell target sequences has not been clarified. To investigate this issue, we developed a method for screening and comparing large numbers of unselected integration events. Using a replication-competent Rous sarcoma virus containing a bacterial suppressor tRNA gene as a selectable marker, we obtained collections of clones comprising integrated provirus together with host flanking sequences. Hybridization and sequence analysis of the flanking sequence reveals the presence of a number of strongly preferred integration targets. Within these targets, independent integration events occur at sites identical to the base.  相似文献   

11.
12.
13.
Infection of a chicken cell with avian sarcoma virus requires division of the infected cell before synthesis of infectious progeny is initiated. This requirement for a cell division for the complete expression of avian sarcoma virus has been examined further with chicken embryo fibroblasts infected with two distinct viruses. Chicken cells infected with and producing a mutant of Rous sarcoma virus temperature sensitive for transformation (tsLA24PR-A) were arrested in G0 by depletion of serum factors from growth medium. These stationary cells continued to produce infectious progeny in the absence of further cell division. Superinfection of the stationary cells with the wild-type Prague strain of Rous sarcoma virus (PR-RSV-C) produced a stable double infection in these cells. Progeny of the superinfecting PR-RSV-C, however, were not detected until these cells underwent division after stimulation with fresh serum-containing medium. The addition of colchicine to these serum-stimulated cells, although not affecting production of the tsLA24PR-A, inhibited the appearance of progeny of the superinfecting PR-RSV-C. These experiments indicate that each avian sarcoma virus infection of a chicken embryo fibroblast requires division of the infected cell for production of that virus regardless of whether or not the cell is already producing a similar virus. The results suggest, therefore, that the requirement for a cell division represents a requirement for an event that controls virus expression in a "cis-acting" fashion specific for the provirus.  相似文献   

14.
The Southern gel filter transfer technique has been used to characterize the integrated genome of Moloney murine leukemia virus (M-MuLV) and the genomes of the endogenous viruses of the mouse. Study of 10 clones of rat cell independently infected by M-MuLV indicates a minimum of 15 integration sites into which the M-MuLV provirus can be inserted. No common integration site is observed among these clones. Clones productively infected by M-MuLV acquire multiple proviruses, whereas infected cells unable to produce virus contain only one M-MuLV provirus. Once established, the integrated genomes are stable for at least two years after initial infection.The use of M-MuLV probe allows detection of a spectrum of Eco RI-cleaved mouse DNA fragments containing endogenous MuLV genomes. DNAs of different inbred laboratory mouse strains yield similar patterns of provirus with each strain showing minor characteristic differences. In some instances, mouse cells infected by M-MuLV reveal additional proviruses beyond those seen in the uninfected cell. DNAs from three different M-MuLV-induced thymomas indicate, as in rat cells, multiple possible integration sites.  相似文献   

15.
16.
Integrated Friend murine leukemia virus copies were analyzed by the Southern blotting procedure in myeloblastic cell lines obtained after in vitro infection of long-term mouse bone marrow cultures. Several steps leading to the generation of malignant myeloblastic cells after a long latency period were observed in the evolution of infected cultures. Shortly after infection, a random distribution of integrated provirus copies was observed in the DNA of normally differentiating myeloid cells. In contrast, a distinct pattern of integrated Friend murine leukemia virus copies was evident in the first non-differentiating immature myeloblastic cells appearing in cultures, suggesting a monoclonal origin of these cells. For each cell line, characteristic hybridizing fragments were conserved during the 1-year culture period necessary for the acquisition of tumorigenic properties and were also observed in tumors grafted in vivo. We can conclude that monoclonality is effective very early in the myeloid transformation process, as soon as the precursor cells are blocked in their differentiation.  相似文献   

17.
Serial passage of Semliki Forest virus (SFV) in chicken embryo cells had little effect on SFV yield; however, high multiplicity infection of murine cells with one of the late passage pools (passage 9 SFV) resulted in a virus yield 10- to 20-fold lower than that obtained with earlier passage virus and 80-fold lower than the corresponding yield in chicken cells. This effect was accompanied by a striking decrease in the levels of 42S and 26S RNA and by increased proportions of a small single-stranded viral RNA (molecular weight, 9 x 10(5)) and of a low-molecular-weight replicative form. There was also a reduction in the number of specific membranous structures previously associated with the group A arbovirus replication complex. These results suggested that passage 9 SFV contained defective interfering particles which were detected more readily after one passage in a murine indicator host cell. Identical results were obtained with two different murine cell lines: one a leukemia virus-free clone of AKR cells and the other JLS-V9 cells chronically infected with Rauscher leukemia virus. Host production of RNA tumor virus particles apparently did not affect arbovirus replication.  相似文献   

18.
Host restriction of friend leukemia virus; fate of input virion RNA   总被引:9,自引:0,他引:9  
M M Sveda  B N Fields  R Soeiro 《Cell》1974,2(4):271-277
Host restriction of oncogenesis by RNA tumor viruses may be studied in vitro by measuring the replication of the lymphatic leukemia component of the Friend Virus Complex (LLV-F) in either NIH-Swiss or Balb/C mouse embryo cells. These cells derive from mice differing at the Fv-1 locus, which controls the replication of all murine RNA leukemia viruses. Studies of early events in the replication of LLV-F were carried out by following the infection of permissive and restrictive mouse embryo cells by 32P labeled LLV-F. 32P labeled viral genome RNA rapidly becomes associated with cell nuclei and may be found integrated to the same extent with high molecular weight host DNA of either permissive or restrictive cells. These results suggest that Fv-1 mediated host restriction of LLV-F occurs at a step following integration of viral genome RNA into host DNA.Two other conclusions are suggested by these data. The nucleus appears to be the site of activation and synthesis of DNA of the infecting virus; and the “provirus”, at least transiently, is represented as an RNA-DNA hybrid molecule covalently integrated with host cell DNA.  相似文献   

19.
To study the basis of cellular latency of human immunodeficiency virus (HIV), we have used a recombinant luciferase-encoding HIV (HXB-Luc) to superinfect nonproductively HIV-1-infected human leukemic cell lines. HXB-Luc contains the Photinus pyralis luciferase gene in place of the nef gene and provides a highly sensitive, simple assay for HIV infection and expression. To circumvent any superinfection block in latently infected cells, we also generated viruses pseudotyped with murine leukemia virus amphotropic envelope (HXB-Luc:ampho). The parental uninfected lines, U937 and A3.01, from which the latently infected cell lines U1 and ACH-2, respectively, were derived could be readily infected with pseudotyped or nonpseudotyped reporter viruses. However, superinfection of U1 cells with either HXB-Luc or HXB-Luc:ampho resulted in only low levels of luciferase activity. Like the endogenous provirus, HXB-Luc provirus could be efficiently activated by phorbol ester treatment of HXB-Luc:ampho-superinfected U1 cells. In contrast, superinfection of ACH-2 cells resulted in active expression of the secondarily introduced virus even in unstimulated cells and luciferase production higher than in the parental cell line A3.01. Thus, the proviral latency in U1 cells appears to result from a defect in the cellular environment (a trans effect), whereas the latency in ACH-2 is specific to the integrated provirus and is probably a cis effect due to the site of integration. These results demonstrate distinct modes of proviral latency in these two cell line models and may have implications in our understanding of the regulation and significance of cellular latency in HIV infection.  相似文献   

20.
If the env gene of spleen focus-forming virus (SFFV) is replaced by a cDNA encoding a constitutively active form of the erythropoietin receptor, EPO-R(R129C), the resultant recombinant virus, SFFVcEPO-R, induces transient thrombocytosis and erythrocytosis in infected mice. Clonogenic progenitor cell assays of cells from the bone marrow and spleens of these infected mice suggest that EPO-R(R129C) can stimulate proliferation of committed megakaryocytic and erythroid progenitors as well as nonerythroid multipotent progenitors. From the spleens of SFFVcEPO-R-infected mice, eight multiphenotypic immortal cell lines were isolated and characterized. These included primitive erythroid, lymphoid, and monocytic cells. Some expressed proteins characteristic of more than one lineage. All cell lines resulting from SFFVcEPO-R infection contained a mutant form of the p53 gene. However, in contrast to infection by SFFV, activation of PU.1 gene expression, by retroviral integration, was not observed. One cell line had integrated a provirus upstream of the fli-1 gene, in a location typically seen in erythroleukemic cells generated by Friend murine leukemia virus infection. This event led to increased expression of fli-1 in this cell line. Thus, infection by SFFVcEPO-R can induce proliferation and lead to transformation of nonerythroid as well as very immature erythroid progenitor cells. The sites of proviral integration in clonal cell lines are distinct from those in SFFV-derived lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号